100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Physical Chemistry - Angular Momentum_lecture18-19 €2,47   In winkelwagen

College aantekeningen

Physical Chemistry - Angular Momentum_lecture18-19

 1 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the ...

[Meer zien]

Voorbeeld 2 van de 12  pagina's

  • 25 april 2023
  • 12
  • 2007/2008
  • College aantekeningen
  • Prof. robert guy griffin
  • Alle colleges
avatar-seller
5.61 Angular Momentum Page 1


Angular Momentum
Since L̂2 and L̂z commute, they share common eigenfunctions. These functions are
extremely important for the description of angular momentum problems – they
determine the allowed values of angular momentum and, for systems like the Rigid
Rotor, the energies available to the system. The first things we would like to know
are the eigenvalues associated with these eigenfunctions. We will denote the
eigenvalues of L̂2 and L̂z by α and β, respectively so that:
L̂2Y β (θ , φ ) = α Y β (θ , φ )
α Lˆ Y β (θ , φ ) = β Y β (θ , φ )
α z α α

For brevity, in what follows we will omit the dependence of the eigenstates on θ
and φ so that the above equations become
Lˆ 2Yαβ = α Yαβ Lˆ zYαβ = β Yαβ
It is convenient to define the raising and lowering operators (note the similarity to
the Harmonic oscillator!):
L̂± ≡ L̂ x ± iLˆ y
Which satisfy the commutation relations:
⎡ L̂+ , L̂− ⎤ = 2�L̂z ⎡ L̂z , L̂± ⎤ = ± �L̂± ⎡ L̂± , L̂2 ⎤ = 0
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
These relations are relatively easy to prove using the commutation relations we’ve
already derived:
⎡ Lˆ x , Lˆ y ⎤ = i�Lˆ z ⎡ Lˆ y , Lˆ z ⎤ = i�Lˆ x ⎡ Lˆ z , Lˆ x ⎤ = i�Lˆ y ⎡ Lˆ 2 , Lˆ z ⎤ = 0
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
For example:
⎡ L̂z , L̂± ⎤ = ⎡ L̂z , L̂ x ⎤ ± i ⎡ L̂z , L̂ y ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
(
= i�L y ± i ( −i�L x ) = ± � L x ± iLy )
= ± �L̂±
The raising and lowering operators have a peculiar effect on the eigenvalue of L̂z :
Lˆ z (Lˆ ±Yαβ ) = ( ⎡⎣ Lˆ z , Lˆ ± ⎤⎦ + Lˆ ± Lˆ z )Yαβ = ( ± �Lˆ ± + Lˆ ± β )Yαβ = ( β ± � ) (Lˆ ±Yαβ )
Thus, L̂+ ( L̂− ) raises (lowers) the eigenvalue of L̂z by � , hence the names. Since
the raising and lowering operators commute with L̂2 they do not change the value
of α and so we can write
Lˆ ±Yαβ ∝ Yαβ ±�
and so the eigenvalues of L̂z are evenly spaced!

What are the limits on this ladder of eigenvalues? Recall that for the harmonic
oscillator, we found that there was a minimum eigenvalue and the eigenstates could

, 5.61 Angular Momentum Page 2


be created by successive applications of the raising operator to the lowest state.
There is also a minimum eigenvalue in this case. To see this, note that
Lˆ2 + Lˆ2 = Lˆ2 + Lˆ2 ≥ 0 x y x y

This result simply reflects the fact that if you take any observable operator and
square it, you must get back a positive number. To get a negative value for the
average value of L̂2x or L̂2y would imply an imaginary eigenvalue of L̂ x or L̂ y , which is
impossible since these operators are Hermitian. Besides, what would an imaginary
angular momentum mean? We now apply the above equation for the specific
wavefunction Yαβ :

∫ ( ) ∫ (
0 ≤ Yαβ * L̂2x + L̂2y Yαβ = Yαβ * L̂2 − L̂2z Yαβ )
= ∫ Yαβ * (α − β 2 ) Yαβ

=α −β2
Hence β 2 ≤ α and therefore − α ≤ β ≤ α . Which means that there are both
maximum and minimum values that β can take on for a given α. If we denote these
values by βmax and βmin, respectively, then it is clear that
Lˆ +Yαβmax = 0 Lˆ −Yαβmin = 0 .
We can then use this knowledge and some algebra tricks trick to determine the
relationship between α and βmax (or βmin). First note that:
⇒ Lˆ − Lˆ +Yαβ max = 0 Lˆ + Lˆ −Yαβ min = 0
We can expand this explicitly in terms of L̂ x and L̂ x :
( )
⇒ Lˆ2x + Lˆ2y − i( Lˆ y Lˆ x − Lˆ x Lˆ y ) Yαβ max = 0 ( )
Lˆ2x + Lˆ2y + i( Lˆ y Lˆ x − Lˆ x Lˆ y ) Yαβ min = 0
However, this is not the most convenient form for the operators, because we don’t
know what L̂ x or L̂ y gives when acting on Yαβ . However, we can re­write the same
expression in terms of L̂2 and L̂z :
(
Lˆ2x + Lˆ2y ± i( Lˆ y Lˆ x − Lˆ x Lˆ y ) )
L̂2 − L̂2z −i�Lˆ z
So then we have
( )
⇒ L̂2 − L̂2z − �L̂z Yαβ max = 0 ( L̂ − L̂ + �L̂ ) Yαβ = 0
2 2
z z
min



⇒ (α − β 2
max − �β max = 0 ) ( α − β + �β ) = 0
2
min min

⇒ α = β max ( β max + �) = β min ( β min − �)
⇒ β max = − β min ≡ �l

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tandhiwahyono. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,47. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 79271 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,47
  • (0)
  Kopen