100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Physical Chemistry - Angular Momentum_lecture18-19

Beoordeling
-
Verkocht
-
Pagina's
12
Geüpload op
25-04-2023
Geschreven in
2007/2008

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, spectroscopy. MIT, 2007.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
25 april 2023
Aantal pagina's
12
Geschreven in
2007/2008
Type
College aantekeningen
Docent(en)
Prof. robert guy griffin
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

5.61 Angular Momentum Page 1


Angular Momentum
Since L̂2 and L̂z commute, they share common eigenfunctions. These functions are
extremely important for the description of angular momentum problems – they
determine the allowed values of angular momentum and, for systems like the Rigid
Rotor, the energies available to the system. The first things we would like to know
are the eigenvalues associated with these eigenfunctions. We will denote the
eigenvalues of L̂2 and L̂z by α and β, respectively so that:
L̂2Y β (θ , φ ) = α Y β (θ , φ )
α Lˆ Y β (θ , φ ) = β Y β (θ , φ )
α z α α

For brevity, in what follows we will omit the dependence of the eigenstates on θ
and φ so that the above equations become
Lˆ 2Yαβ = α Yαβ Lˆ zYαβ = β Yαβ
It is convenient to define the raising and lowering operators (note the similarity to
the Harmonic oscillator!):
L̂± ≡ L̂ x ± iLˆ y
Which satisfy the commutation relations:
⎡ L̂+ , L̂− ⎤ = 2�L̂z ⎡ L̂z , L̂± ⎤ = ± �L̂± ⎡ L̂± , L̂2 ⎤ = 0
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
These relations are relatively easy to prove using the commutation relations we’ve
already derived:
⎡ Lˆ x , Lˆ y ⎤ = i�Lˆ z ⎡ Lˆ y , Lˆ z ⎤ = i�Lˆ x ⎡ Lˆ z , Lˆ x ⎤ = i�Lˆ y ⎡ Lˆ 2 , Lˆ z ⎤ = 0
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
For example:
⎡ L̂z , L̂± ⎤ = ⎡ L̂z , L̂ x ⎤ ± i ⎡ L̂z , L̂ y ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
(
= i�L y ± i ( −i�L x ) = ± � L x ± iLy )
= ± �L̂±
The raising and lowering operators have a peculiar effect on the eigenvalue of L̂z :
Lˆ z (Lˆ ±Yαβ ) = ( ⎡⎣ Lˆ z , Lˆ ± ⎤⎦ + Lˆ ± Lˆ z )Yαβ = ( ± �Lˆ ± + Lˆ ± β )Yαβ = ( β ± � ) (Lˆ ±Yαβ )
Thus, L̂+ ( L̂− ) raises (lowers) the eigenvalue of L̂z by � , hence the names. Since
the raising and lowering operators commute with L̂2 they do not change the value
of α and so we can write
Lˆ ±Yαβ ∝ Yαβ ±�
and so the eigenvalues of L̂z are evenly spaced!

What are the limits on this ladder of eigenvalues? Recall that for the harmonic
oscillator, we found that there was a minimum eigenvalue and the eigenstates could

, 5.61 Angular Momentum Page 2


be created by successive applications of the raising operator to the lowest state.
There is also a minimum eigenvalue in this case. To see this, note that
Lˆ2 + Lˆ2 = Lˆ2 + Lˆ2 ≥ 0 x y x y

This result simply reflects the fact that if you take any observable operator and
square it, you must get back a positive number. To get a negative value for the
average value of L̂2x or L̂2y would imply an imaginary eigenvalue of L̂ x or L̂ y , which is
impossible since these operators are Hermitian. Besides, what would an imaginary
angular momentum mean? We now apply the above equation for the specific
wavefunction Yαβ :

∫ ( ) ∫ (
0 ≤ Yαβ * L̂2x + L̂2y Yαβ = Yαβ * L̂2 − L̂2z Yαβ )
= ∫ Yαβ * (α − β 2 ) Yαβ

=α −β2
Hence β 2 ≤ α and therefore − α ≤ β ≤ α . Which means that there are both
maximum and minimum values that β can take on for a given α. If we denote these
values by βmax and βmin, respectively, then it is clear that
Lˆ +Yαβmax = 0 Lˆ −Yαβmin = 0 .
We can then use this knowledge and some algebra tricks trick to determine the
relationship between α and βmax (or βmin). First note that:
⇒ Lˆ − Lˆ +Yαβ max = 0 Lˆ + Lˆ −Yαβ min = 0
We can expand this explicitly in terms of L̂ x and L̂ x :
( )
⇒ Lˆ2x + Lˆ2y − i( Lˆ y Lˆ x − Lˆ x Lˆ y ) Yαβ max = 0 ( )
Lˆ2x + Lˆ2y + i( Lˆ y Lˆ x − Lˆ x Lˆ y ) Yαβ min = 0
However, this is not the most convenient form for the operators, because we don’t
know what L̂ x or L̂ y gives when acting on Yαβ . However, we can re­write the same
expression in terms of L̂2 and L̂z :
(
Lˆ2x + Lˆ2y ± i( Lˆ y Lˆ x − Lˆ x Lˆ y ) )
L̂2 − L̂2z −i�Lˆ z
So then we have
( )
⇒ L̂2 − L̂2z − �L̂z Yαβ max = 0 ( L̂ − L̂ + �L̂ ) Yαβ = 0
2 2
z z
min



⇒ (α − β 2
max − �β max = 0 ) ( α − β + �β ) = 0
2
min min

⇒ α = β max ( β max + �) = β min ( β min − �)
⇒ β max = − β min ≡ �l
€2,62
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tandhiwahyono
2,0
(1)

Maak kennis met de verkoper

Seller avatar
tandhiwahyono University of Indonesia
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
3 jaar
Aantal volgers
8
Documenten
861
Laatst verkocht
1 jaar geleden
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2,0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen