100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Goede samenvatting voor semester 2 van Statistiek 1 €6,49   In winkelwagen

Samenvatting

Goede samenvatting voor semester 2 van Statistiek 1

 11 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

Samenvattingen met eigen notities ter verduidelijking, enkele verdelingen en afbeeldingen en al de inhoud van de slides

Voorbeeld 4 van de 38  pagina's

  • 26 mei 2023
  • 38
  • 2022/2023
  • Samenvatting
avatar-seller
Statistiek semester 2
Inhoudsopgave
1 Basisbegrippen kansberekening (H8)....................................................................................................................... 3
1.1 De taal van de kans = basisbegrippen.........................................................................................................................3
1.1.1 Intermezzo: symbolen uit de verzamelingenleer.................................................................................................3
1.2 De kansdefinitie...........................................................................................................................................................4
1.3 Axiomatische kansregels.............................................................................................................................................5

2 Stochasten, verwachtingswaarde en variantie (H9).................................................................................................. 7
2.1 Verwachte waarde van een stochast..........................................................................................................................7
2.2 Variantie van een stochast..........................................................................................................................................7
2.2.1 Lineair getransformeerde stochasten..................................................................................................................8
2.3 Simultane kansverdelingen..........................................................................................................................................8
2.3.1 Som van stochasten: verwachtingswaarde en variantie/standaardafwijking.....................................................9
2.3.2 Product van stochasten: verwachtingswaarde en variantie/standaardafwijking...............................................9
2.4 Conditionele/voorwaardelijke kansverdelingen........................................................................................................10

3 Binomiale verdeling (H10)...................................................................................................................................... 11
3.1 De verjaardagsparadox.............................................................................................................................................11
3.2 De binomiaalverdeling...............................................................................................................................................12
3.2.1 Kenmerken en algemene formule.....................................................................................................................12
3.2.2 Gebruik van tabellen..........................................................................................................................................13
3.2.3 Lottospel.............................................................................................................................................................13
3.2.4 Verwachtingswaarde en variantie van een binomiaal verdeelde stochast.......................................................14
3.3 Hypergeometische verdeling.....................................................................................................................................15

4 De normale verdeling (H11)................................................................................................................................... 16
4.1 Introductie.................................................................................................................................................................16
4.2 Eigenschappen van de normale verdeling en normale dichtheidsfunctie.................................................................16
4.3 De standaardnormale verdeling................................................................................................................................17
4.3.1 Standaardiseren en z-scores..............................................................................................................................17
4.4 Kansdichtheden opzoeken.........................................................................................................................................18
4.4.1 Twee soorten vragen over normale verdeling...................................................................................................18
4.5 Chebychev voor de normale verdeling.......................................................................................................................18
4.6 Normaliteitstoetsing..................................................................................................................................................19
4.6.1 Chi².....................................................................................................................................................................19
4.6.2 QQ-plot...............................................................................................................................................................20
4.7 De continuïteitscorrectie............................................................................................................................................20

5 Normale benadering van binominale verdeling...................................................................................................... 22
5.1 Rodedraadprobleem..................................................................................................................................................22
5.1.1 Centrale limietstelling........................................................................................................................................22

6 Schatten................................................................................................................................................................ 24

, 6.1 Steekproefproporties.................................................................................................................................................24
6.1.1 Rodedraadprobleem 2.0....................................................................................................................................24
6.1.2 Rodedraadprobleem 3.0....................................................................................................................................25
6.2 Puntschatting van de populatieproportie (p)............................................................................................................25
6.2.1 Zuivere puntschatting........................................................................................................................................26
6.2.2 Efficiënte puntschatting.....................................................................................................................................26
6.2.3 Puntschatting voor p..........................................................................................................................................27
6.3 Intervalschatting van de populatieproportie (p).......................................................................................................27
6.4 De eindigheidscorrectie.............................................................................................................................................29
6.5 Punt- en intervalschatting van het populatiegemiddelde ()......................................................................................29
6.5.1 Puntschatting voor µ..........................................................................................................................................30
6.5.2 Intervalschatting voor........................................................................................................................................30
6.5.3 T-verdeling.........................................................................................................................................................30
6.5.4 Stappenplan betrouwheidsinterval gemiddelde...............................................................................................31

7 Hypothesetoetsing................................................................................................................................................ 32
7.1.1 Stap 1: H0 en Ha bepalen....................................................................................................................................32
7.1.2 Stap 2: Toetsingsgrootheid en verdeling...........................................................................................................32
7.1.3 Stap 3: Verwerpingsgebied................................................................................................................................33
7.1.4 Stap 4: Situeren toetsingsgrootheid – kritieke waarde.....................................................................................33
7.1.5 Stap 5: Conclusie................................................................................................................................................33
7.2 Hypothesetoetsen van proporties..............................................................................................................................33
7.2.1 Voorbeeld (gaat over proporties ).....................................................................................................................34
7.3 Hypothesetoetsen voor gemiddelden........................................................................................................................35
7.4 Toetsen van gemiddelden met onbekende σ.............................................................................................................36
7.5 Type 1-fout en Type 2-fout........................................................................................................................................36
7.5.1 Type 1-fout.........................................................................................................................................................37
7.5.2 Type 2-fout.........................................................................................................................................................37
7.5.3 Back to the future..............................................................................................................................................37

,1 Basisbegrippen kansberekening (H8)
Het belang van kansrekenen kan handig zijn om spelletjes te winnen en om uitspraken te doen over
een populatie op basis van een steekproef

Dit semster spreken we over inferentiële statistiek: Op basis van steekproefgegevens uitspraken
doen over de populatie.

1.1 De taal van de kans = basisbegrippen
• Een stochastisch proces is een proces waarvan uitkomst onzeker is (gooien met dobbelsteen)
o Synoniem: ‘kansexperiment’
o <-> Een deterministisch proces is een proces waarvan de uitkomst vastligt

• Een toevalsgebeuren (gebeurtenis) is een specifieke (groep van) uitkomst(en) van een
stochastisch proces
o Vb een 1 gooien met de dobbelsteen

• Een elementair toevalsgebeuren behelst één uitkomst
o bv. Toevalsgebeuren A (‘het gooien van een 1 met een eerlijke dobbelsteen’) = {1}
o 1 mogelijke uitkomst

• Uitkomstenruimte S is de verzameling van alle mogelijke elementaire toevalsgebeurens
o S={1, 2, 3, 4, 5, 6} of S={k, m} -> kop of munt

• Een samengesteld toevalsgebeuren heeft betrekking op meerdere elementaire
toevalsgebeurens
o bv. Gebeurtenis B (‘het gooien van een even getal met een eerlijke dobbelsteen’) =
{2, 4, 6}

1.1.1 Intermezzo: symbolen uit de verzamelingenleer
= Een verzameling is een geheel van objecten, die aan bepaalde voorwaarden moeten voldoen om
tot de verzameling te behoren.
 Notatie: A = {s, t, a, i, e, k} -> verzameling van letters in statistiek

 De unie (u) van twee verzamelingen A en B bestaat uit alle elementen die in A of B zitten
 A∪B
 Voorbeeld: A = {1, 2} en B = {oneven}. A ∪ B = 1 & 2

 De doorsnede van twee verzamelingen A en B bestaat uit alle elementen die in A en B zitten
 A∩ B
 Voorbeeld: A = {1, 2} en B = {oneven}; A ∩B = 1

 A is een deelverzameling van B wanneer ze een deel van de elementen van B bevat
 A⊂B
 Voorbeeld: A = {1, 2} en B = {1, 2, 3, 4, 5, 6}

,  Disjuncte verzamelingen zijn verzamelingen die geen gemeenschappelijke
elementen bevatten
 A∩ B = ∅ (dus de doorsnede = leeg, ze zijn disjunt)
 Voorbeeld: A = {1} en B = {2, 4, 6}

 Het verschil van twee verzamelingen A en B is de verzameling van alle elementen van A die niet
in B zitten
 A\B
 Voorbeeld: A = {1, 2, 3, 4, 5, 6} en B = {2, 4, 6}; A ¿B = ?

Basisbegrippen kansberekening:
- Elk toevalsgebeuren A (elementair of samengesteld) is een deelverzameling uit de
uitkomstenruimte S
- De elementaire toevalsgebeurens in uitkomstenruimte S zijn disjunct: ze overlappen niet
- Uitkomstenruimte S is exhaustief: het bevat alle mogelijke elementaire toevalsgebeurens
- Het complement van toevalsgebeuren A omvat alle elementaire toevalsgebeurens in de
uitkomstenruimte S die niet gelijk zijn aan A
• Ac of A = S \ A
• Voorbeeld: A = {1}, dan A = {2, 3, 4, 5, 6}
• Dus complement is dan allesbehalve 1 gooien

De machtsverzameling M(S) is de verzameling van alle mogelijke deelverzamelingen van
uitkomstenruimte S
• Voorbeeld: S = {1, 2, 3}
• Hoeveel deelverzamelingen zijn er mogelijk?
• Met 0 elementen: ∅
• Met 1 element: {1}, {2}, {3}
• Met 2 elementen:{1, 2}, {2, 3}, {1, 3}
• Met 3 elementen: {1, 2, 3}
•  Als #S = n  #M(S) = 2n

Als uitkomstenruimte bestaat uit n elementen, is het aantal mogelijke machtverzameilingen, 2 tot
de nde

1.2 De kansdefinitie
= Een kans P(G) is de waarschijnlijkheid dat de gebeurtenis G zal optreden, uitgedrukt in een getal
tussen 0 en 1 (0 gebeurd nooit, 1 gebeurd sws)
› P staat voor probability
› Voorbeeld: P({2 gooien met eerlijke dobbelsteen}) = 1 op 6

P is een functie die met elke gebeurtenis G een reëel getal P(G) tussen 0 en 1 associeert

1. Subjectieve kansdefinitie (Gokkans)
Bijvoorbeeld `de kans om de lotto te winnen is erg klein’
= Vaak gebaseerd op ervaring, vaag
 Wordt vaak gebruikt in het dagelijkse leven

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper morganej. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67096 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen

Laatst bekeken door jou


€6,49
  • (0)
  Kopen