100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary of lecture notes and textbook €4,00
In winkelwagen

Samenvatting

Summary of lecture notes and textbook

 11 keer bekeken  0 keer verkocht
  • Vak
  • Instelling
  • Boek

Summary of lecture notes and textbook from weeks 1-6

Voorbeeld 4 van de 37  pagina's

  • Nee
  • Onbekend
  • 4 juni 2023
  • 37
  • 2022/2023
  • Samenvatting
avatar-seller
PROPERTY AND POWER: Mutual Gains and Conflict
Bargaining, Institutions and Allocations (Unit 5)
WEEK 2 : Calculus behind MRS and MRT

Angela’s Optimisation Problem

Maximise U= U(t,B) subject to B=f(24-t)

To solve this find : MRS=MRT

Marginal Rate of Substitution

U=U(t,B)

MRS= |slope of IC| = |∆B/∆t|




For a specific utility level (c) we can represent the indifference curve as U(t,B)=c

dU
>0
dt
dU
>0
dB
dU dU
∆u≈ ∆ t+ ∆B
dt dB
dU dU
∆ t+ ∆ B=0
dt dB
dU

∆B dt −dU dB
= = x
∆t dU dt dU
dB



| ||
dU
MRS=
dt
dU
=
−dU dB
dt
x
dU |
dB

This helps explain why the MRS at A > MRS at B

At point B, we have so much free time that the implication is my marginal utility of free time
is quite low whilst my marginal utility of grain is quite high – makes the slope/MRS quite flat

,This contrasts with point A, we have little free time so my marginal utility of free time is
quite high and my marginal utility of grain is very low – my slope is steeper than B




Quasi-linear Preferences
LEIBNIZ 5.4.1

Angela is a farmer who values two things: grain (which she consumes) and free time.

In Unit 5 we assume that her preferences with respect to these two goods have a special
property: she values grain at some constant amount relative to free time, independently
of how much grain she already has. This Leibniz shows how to capture that property
mathematically.

In earlier Leibnizes we have made extensive use of the Cobb-Douglas utility function. We
now explore an alternative: the quasi-linear utility function.

Let t be Angela’s daily hours of free time, and c the number of bushels of grain that she
consumes per day. We assume, as in the main text, that the rate at which Angela is willing to
exchange grain for free time remains constant as her consumption of grain increases.

In other words, her marginal rate of substitution between hours of free time and bushels of
grain depends only on the free time and not at all on the grain. We have sketched indifference
curves with this property in Figure 1. For any given amount of free time, say t 0 , the slope of
the indifference curve at the point ( t 0 , c ) is the same for all c, which means that the tangent
lines in the figure are parallel.

Figure 1: Indifference curves with the property that MRS depends only on free time

,Quasi-linear Preferences
LIEBNIZ 5.4.1

A utility function with the property that the marginal rate of substitution (MRS) between and
depends only on is:

U ( t , c )=v ( t ) +c




where v is an increasing function: v’(t)>0 because Angela prefers more free time to less. This is called
a quasi-linear function because utility is linear in c and some function of t. We now show that this
utility function has the required property.


Angela’s marginal rate of substitution (MRS) between free time and consumption of grain is defined
as in Leibniz 3.2.1 as the absolute value of the slope of the indifference curve through the point (t, c).
It may be found by the formula we derived in the earlier Leibniz:

∂U
/∂ U
∂t
MRS=
∂c

, ∂U ∂U
In this case, =v ' ( t ) and =1, so
∂t ∂c

MRS=v ' ( t )

The same result can be obtained directly, without using the general formula. Each indifference curve is
of the form

v ( t ) +c=constant


Or c=k−v ( t ) , where k is a constant. Therefore


dc '
=−v ( t ) <0
dt



along an indifference curve. The curve slopes downwards and the absolute value of the slope is . Thus
the MRS is a function of alone, as we wished to prove.


In Figure 1, the indifference curves have the usual property of diminishing MRS, flattening as you
move to the right. For this to happen, v’(t) must fall as t increases. Thus v”(t)<0 : v is a concave
function. Because indifference curves are of the form ' c=constant−v (t)' , any two of them differ
by a constant vertical distance, as you can see in Figure 1. The reason why the curves in the diagram
bunch together horizontally at large values of c is simply that they are steeper there.




Quasi-linear Preferences
LIEBNIZ 5.4.1 SUMMARY

To summarize: the utility function

U ( t , c )=v ( t ) +c

where the function v is increasing and concave, is called quasi-linear. Using a utility function of this
form means that we are making a restrictive assumption about preferences, but it has a very useful
implication. Because utility is of the form ‘c + something’, it is measured in the same units as
consumption. Angela values t hours of free time as much as v(t) bushels of grain.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper taylor_franken. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,00. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59063 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,00
  • (0)
In winkelwagen
Toegevoegd