100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete Solution Manual Probability and Statistics for Computer Scientists 2nd Edition Baron Questions & Answers with rationales €16,70   In winkelwagen

Tentamen (uitwerkingen)

Complete Solution Manual Probability and Statistics for Computer Scientists 2nd Edition Baron Questions & Answers with rationales

 1919 keer bekeken  20 keer verkocht
  • Vak
  • Probability
  • Instelling
  • Probability
  • Boek

Probability and Statistics for Computer Scientists 2nd Edition Baron Solutions Manual Complete Solution Manual Probability and Statistics for Computer Scientists 2nd Edition Baron Questions & Answers with rationales PDF File All Pages All Chapters Grade A+

Voorbeeld 4 van de 143  pagina's

  • 21 juni 2023
  • 143
  • 2022/2023
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Probability
  • Probability
avatar-seller
Probability and Statistics for Computer Scientists 2nd Edition Baron Solutions Manual Table of Contents Chapter 2 solutions 3 Chapter 3 solutions 14 Chapter 4 solutions 27 Chapter 5 solutions 40 Chapter 6 solutions 46 Chapter 7 solutions 54 Chapter 8 solutions 66 Chapter 9 solutions 71 Chapter 10 solutions 84 Chapter 11 solutions 110 Appendix: Matlab codes for exercises -projects 131 CHAPTER 2 3 Chapter 2 2.1 An outcome is the chosen pair of chips. The sample space in this problem consists of 15 pairs: AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF, EF (or 30 pairs if the order of chips in each pair matters, i.e., AB and BA are different pairs). All the outcomes are equally likely because two chips are chosen at random. One outcome is ‘favorable’, when both chips in a pair are defective (two such pairs if the order matters). Thus, P (both chips are defective) = number of favorable outcomes = total number of outcomes 1/15 } } 2.2 Denote the events: We have: M = { problems with a motherboard } H = { problems with a hard drive } Hence, P {M } = 0.4, P {H} = 0.3, and P {M ∩ H} = 0.15. and P {M ∪ H} = P {M } + P {H} − P {M ∩ H} = 0.4 + 0.3 − 0.15 = 0.55, P {fully functioning MB and HD} = 1 − P {M ∪ H} = 2.3 Denote the events, Then I = {the virus enters through the internet } E = {the virus enters through the e-mail} P {E¯ ∩ I¯} = 1 − P {E ∪ I} = 1 − (P {E} + P {I} − P {E ∩ I}) = 1 − (.3 + .4 − .15) = It may help to draw a Venn diagram. 2.4 Denote the events, C = { knows C/C++ } , F = { knows Fortran } . Then (a) P F¯ = 1 − P {F } = 1 − 0.6 = (b) P F¯ ∩ C¯ = 1 − P {F ∪ C} = 1 − (P {F } + P {C} − P {F ∩ C}) = 1 − (0.7 + 0.6 − 0.5) = 1 − 0.8 = 0.2 (c) P {C\F } = P {C} − P {F ∩ C} = 0.7 − 0.5 = 0.2 0.4 0.45 0.45 } } } } ∩ ∩ } { } { } { } } } } { ∩ } 4 INSTRUCTOR ’S SOLUTION MANUAL (d) P {F \C} = P {F } − P {F ∩ C} = 0.6 − 0.5 = P C F 0.5 (e) P {C | F } = = = P {F } 0.6 (f) P {F | C} = P {C ∩ F } = 0.5 = P {C} 0.7 2.5 Denote the events: Then D1 = {first test discovers the error } D2 = {second test discovers the error} D3 = {third test discovers the error} P { at least one discovers } = P {D1 ∪ D2 ∪ D3} = 1 − P D¯1 ∩ D¯2 ∩ D¯3 = 1 − (1 − 0.2)(1 − 0.3)(1 − 0.5) = 1 − 0.28 = We used the complement rule and independence. 2.6 Let A = {arrive on time}, W = {good weather }. We have P {A | W } = 0.8, P A | W¯ = 0.3, P {W } = 0.6 By the Law of Total Probability, P {A} = P {A | W } P {W } + P A | W¯ P W¯ = (0.8)(0 .6) + (0.3)(0 .4) = 0.60 2.7 Organize the data. Let D = detected , I = via internet , E = via e-mail = I. Notice that the question about detection already assumes that the spyware has entered the system. This is the sample space, and this is why P {I} + P {E} = 1. We have P {I} = 0.7, P {E} = 0.3, P {D | I} = 0.6, P {D | E} = 0.8. By the Law of Total Probability, P {D} = (0.6)(0 .7) + (0.8)(0 .3) = 2.8 Let A1 = {1st device fails}, A2 = {2nd device fails}, A3 = {3rd device fails}. P { on time } = P { all function } = P A1 A2 A3 = P A1 P A2 P A3 (independence) = (1 − 0.01)(1 − 0.02)(1 − 0.02) (complement rule) = 0.9508 0.66 0.72 0.7143 0.8333 0.1 0.1792 } } } } } } } } } } } } CHAPTER 2 5 2.9 P {at least one fails} = 1 − P {all work} = 1 − (.96)( .95)( .90) = . 2.10 P {A ∪ B ∪ C} = 1 − P A¯ ∩ B¯ ∩ C¯ = 1 − P A¯ P B¯ P C¯ = 1 − (1 − 0.4)(1 − 0.5)(1 − 0.2) = 0.76 2.11 (a) P {at least one test finds the error} = 1 − P {all tests fail to find the error} = 1 − (1 − 0.1)(1 − 0.2)(1 − 0.3)(1 − 0.4)(1 − 0.5) = 1 − (0.9)(0 .8)(0 .7)(0 .6)(0 .5) = (b) The difference between events in (a) and (b) is the probability that exactly one test finds an error. This probability equals P {exactly one test finds the error} = P {test 1 find the error, the others don’t find} +P {test 2 find the error, the others don’t find} + . . . = (0.1)(1 − 0.2)(1 − 0.3)(1 − 0.4)(1 − 0.5) +(1 − 0.1)(0.2)(1 − 0.3)(1 − 0.4)(1 − 0.5) + . . . = (0.1)(0 .8)(0 .7)(0 .6)(0 .5) + (0.9)(0 .2)(0 .7)(0 .6)(0 .5) +(0.9)(0 .8)(0 .3)(0 .6)(0 .5) + (0.9)(0 .8)(0 .7)(0 .4)(0 .5) +(0.9)(0 .8)(0 .7)(0 .6)(0 .5) = 0.3714 . Then P {at least two tests find the error} = P {at least one test finds the error} −P {exactly one test finds the error} = 0.8488 − 0.3714 = (c) P {all tests find the error} = (0.1)(0 .2)(0 .3)(0 .4)(0 .5) = 2.12 Let Aj = { dog j detects the explosives }. P {at least one dog detects } = 1 − P {all four dogs don’t detect } = 1 − P A¯1 P A¯2 P A¯3 P A¯4 = 1 − (1 − 0.6)4 = 0.9744 2.13 Let Aj be the event {Team j detects a problem }. Then P {at least one team detects } = 1 − P {no team detects } = 1 − P A¯1 ∩ A¯2 ∩ A¯3 = 1 − P A¯1 P A¯2 P A¯3 = 1 − (1 − 0.8)(1 − 0.8)(1 − 0.8) = 0.992 . 2.14 (a) The total number of possible passwords is P (26, 6) = (26)(25)(24)(23)(22)(21) = 165, 765, 600 because there are 26 letters in the alphabet, they should be all different in the 0.0012 0.4774 0.8488

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper gradexam. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €16,70. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 73918 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€16,70  20x  verkocht
  • (0)
  Kopen