100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
 Edexcel AS Level 2022 PAPER 1: Pure Mathematics €5,86   In winkelwagen

Tentamen (uitwerkingen)

 Edexcel AS Level 2022 PAPER 1: Pure Mathematics

 6 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

 Edexcel AS Level 2022 PAPER 1: Pure Mathematics

Voorbeeld 4 van de 48  pagina's

  • 23 juni 2023
  • 48
  • 2022/2023
  • Tentamen (uitwerkingen)
  • Alleen vragen
avatar-seller
Please check the examination details below before entering your candidate information
Candidate surname Other names


Centre Number Candidate Number




Pearson Edexcel Level 3 GCE
Paper
Time 2 hours
reference 8MA0/01
 
Mathematics
Advanced Subsidiary
PAPER 1: Pure Mathematics

You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator


Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.
Instructions
•• IfUsepencil
black ink or ball-point pen.
is used for diagrams/sketches/graphs it must be dark (HB or B).
• centre number
Fill in the boxes at the top of this page with your name,
and candidate number.
• clearly labelled. and ensure that your answers to parts of questions are
Answer all questions

• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear.
Answers without working may not gain full credit.
• Inexact
stated.
answers should be given to three significant figures unless otherwise

Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 14 questions in this question paper. The total mark for this paper is 100.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over



*P69201A0148*
P69201A
©2022 Pearson Education Ltd.

Q:1/1/1/1/

,1. Find



 3 3 
 8 x − + 5 d x

2 x

giving your answer in simplest form.
(4)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

2
*P69201A0248* 

,Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________

(Total for Question 1 is 4 marks)



*P69201A0348*
3
 Turn over

, 2. f (x) = 2x 3 + 5x 2 + 2x + 15
(a) Use the factor theorem to show that (x + 3) is a factor of f(x).
(2)
(b) Find the constants a, b and c such that

f (x) = (x + 3)(ax 2 + bx + c)
(2)
(c) Hence show that f (x) = 0 has only one real root.
(2)
(d) Write down the real root of the equation f (x – 5) = 0
(1)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________


4
*P69201A0448* 

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper academe. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,86. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64438 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,86
  • (0)
  Kopen