100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Task 3: designing clinical trial €7,49
In winkelwagen

Case uitwerking

Task 3: designing clinical trial

 12 keer bekeken  0 keer verkocht

Answers to learning goals

Voorbeeld 2 van de 8  pagina's

  • 4 juli 2023
  • 8
  • 2021/2022
  • Case uitwerking
  • N/a
  • 9-10
Alle documenten voor dit vak (5)
avatar-seller
zoeverschueren
Task 4 – designing clinical trials


Learning goals

1) What is the difference in sample sizes between superiority and non-inferiority trials?
 Non-inferiority trials need a bigger sample size

Depends on: standard error


2) What are the difference between intention to treat (ITT) and per protocol analysis? (pros/cons)
When to use which analysis and why?

INTENTION TO TREAT ANALYSIS

In the intention to treat (ITT) analysis every randomized participant should enter the primary
analysis. Consequently, patient who drop out or are non-compliant to the study treatment are
included in the primary analysis within the respective treatment group (arm) they have been
assigned to at randomization.

The patient set used for the primary analysis according to the ITT is called full analysis set.

Pros:
- The original randomization and the number of patients in the treatment groups remain
unchanged.
- Potential bias due to exclusion of patients is avoided
Cons:
- Imputation of missing data required

There are some specific reasons that might cause and exclusion of a patient for the full analysis set:
- No treatment was applied at al
- There are no data available after randomization

When to use
In a clinical superiority trial one wants to detect a benefit of treatment A compared to treatment B.
The aim is to disprove that treatment A is not better than treatment B  null hypothesis

In clinical trials any over-estimation of the effect needs to be avoided. With respect to prevention of
type I error it is still better to choose a method which underestimates the effect (conservative
approach) than a method which might overestimate the effect.

 In a superiority trial you should do the analysis according to the ITT principle

In this kind of analysis, the actual treatment effect is usually underestimates. It can be derived from
the fact that in the full analysis set also non-compliant patients are included and non-compliance is
generally associates with a negative outcome.

PER PROTOCOL ANALYSIS

, Task 4 – designing clinical trials


The aim of per protocol (PP) analysis is to identify a treatment effect which would occur under
optimal conditions.

 What is the effect if patients are fully compliant?

Therefore, some patients (from the full analysis set) need to be excluded from the population used
for the PP analysis.

This applies to patient fulfilling any of the following criteria:
- Any major protocol deviations
- Non-availability of measurements of the primary outcome
- Non-sufficient exposure to study treatment

Pros:
- Proof of therapeutic concept
Cons:
- Selection bias
- Reduced power depending on non-compliance

When to use
 The per protocol analysis is the primary analysis in non-inferiority trial
 Could be the secondary analysis in superiority trials
o Difference between ITT and PP = bias

3) How do you determine the non-inferiority limit?

A non-inferiority trial aims to demonstrate that the intervention treatment is not worse than the
comparator (control) by more than a small pre-specified margin. This amount is knows as the non-
inferiority margin or delta.

The outcome a non-inferiority trial is usually assessed by a two-sided 95% confidence interval.
Two aspects of the results that should attract particular attention:
- Point estimate of the difference = observed difference between the test (intervention) and
reference (control).
o Best estimate of the true difference
- Lower limit of the confidence interval = represents the lower bound and is usually
interpreted as the degree of inferiority to the reference that can be excluded based on the
data presented

Delta has to be smaller than the smallest value that would make a clinical difference

4) How to compute the sample size calculation?

The sample size depends on several factors:
- Alpha = type I error
o Type I error = reject H0, if H0 is correct
- Desired statistical power = 1 – beta
o Type II error = do not reject H0, H0 is incorrect

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper zoeverschueren. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 50990 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,49
  • (0)
In winkelwagen
Toegevoegd