100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Physics Laboratory (Samenvatting Natuurkundig laboratorium) €2,99
In winkelwagen

Samenvatting

Summary Physics Laboratory (Samenvatting Natuurkundig laboratorium)

 1 keer verkocht

Physics Laboratory 1 - Data and error analyses Samenvatting van de studie astronomie , vak: Physics laboratory.

Voorbeeld 3 van de 11  pagina's

  • 25 maart 2017
  • 11
  • 2016/2017
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
svenlay
Summary Physics Laboratory

written by

TimonBeeftink




www.stuvia.com




Downloaded by: svenlay | 148607@csgwesselgansfort.nl
Distribution of this document is illegal

, Stuvia.com - The Marketplace to Buy and Sell your Study Material




Chapter 1: Introduction
1.1 Why error analysis?
It is impossible to indicate the exact value of a physical quantity when it is determined experimentally; due to
equipment, persons doing the experiment etc. There will always be an error in the final quantity. Error analysis
describes how errors in separate measurements propagate and influence the final result.


1.2 Sources of error
Possible errors during an experiment are:
 reading error: when reading a value from a scale, a reading error always occurs.
 adjustment error: when adjusting a certain quantity in an experiment, an error is made.
 methodical error: this arises if a measurement instrument influences the measured quantity.
 instrumentation error: due to the calibration accuracy of an apparatus an error occurs.
 errors in the experimental setup: occur if the theory is imperfect or things are neglected.

1.3 Error classification
Errors can be divided into two different classes:
 random errors: if its sign and magnitude vary unpredictably when a measurement is repeated.
 systematic errors: if its sign and magnitude remain the same the whole experiment.

1.4 Representation of the random error
There are two ways in which a random error can be represented:
 assigned error: if one single measurement (or a few) of a quantity is performed, an estimate has to
made of the uncertainty in the result. The error ∆𝑥 is then assigned in such a way, that the interval 𝑥 −
∆𝑥 to 𝑥 + ∆𝑥 is approximately 68% of the distribution of values that could be attributed to the value.
 statistical error: a statistical error is derived from the spread in the results of a large number of repeated
measurements of a single quantity. The statistical error 𝑠𝑥 is then defined such that it covers
approximately 68% of 𝑥 − 𝑠𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑠𝑥 .
The value of a quantity 𝑋 is commonly written as 𝑋 = 𝑥 ± ∆𝑥, where 𝑥 is the best estimate for 𝑋, based on
measurement results, and ∆𝑥 the error as defined above. All errors can be given as either an absolute error or a
relative error. The absolute error has the same dimension as the quantity it belongs to, the relative error is a
fraction and is dimensionless. This yields the following table:

assigned error statistical error
absolute error ∆𝑥 𝑠𝑥
relative error (fraction) ∆𝑥 𝑠𝑥
|𝑥| |𝑥|
relative error (percentage) ∆𝑥 𝑠𝑥
100 100
|𝑥| |𝑥|


1.5 Rounding off and notation of measurement results
Since the accuracy of an experiment is limited, not all digits of the calculated result are meaningful. Meaningful
digits are called significant digits. The general rule is that an error is always rounded off to 1 significant digit and
that it is always rounded off upwards. A measurement result is rounded off in such a way that its last digit is at
the same decimal place as the least significant digit of the error. Some examples:
 𝑣 = 2,71828 𝑚𝑠 −1 ± 2 𝑚𝑚𝑠 −1 → 𝑣 = 2,718 ± 0,002 𝑚𝑠 −1
 𝐶 = 4722 𝜇𝐹 ± 0,42 𝑚𝐹 → 𝐶 = 4,7 ± 0,5 𝑚𝐹 = (4,7 ± 0,5) ∙ 103 𝜇𝐹
 𝑅 = 68 ± 22 𝑘𝛺 → 𝑅 = 68,00 ± 0,03 𝑀𝛺
o Remark: the relatively small error ∆𝑅 warrants more significant digits in 𝑅 then given.

1.6 Accuracy versus precision
In measurement theory, there is a distinction between accuracy and precision. An accurate measurement is one
which has a small error, which means that the final result is very close to the true value of the quantity. A precise
measurement is one with many significant digits. But a precise measurement can be inaccurate.

1

Downloaded by: svenlay | 148607@csgwesselgansfort.nl
Distribution of this document is illegal

, Stuvia.com - The Marketplace to Buy and Sell your Study Material




Chapter 2: Propagation of errors
2.1 Quantities dependent on a single variable
Errors in the measurement lead to an error in the final quantity: so-called propagation of errors. When you are
dealing with one variable, you can apply the following general formula for a function 𝑦 = 𝑦(𝑥):

𝑑𝑦
∆𝑦 = ∆𝑥
𝑑𝑥


2.2 Quantities dependent on more than one variable
For quantities dependent on more than one (independent) variable, there are error propagation formulae:

Relation between 𝑍 and 𝐴, 𝐵 Relation between standard errors
𝑍 =𝐴+𝑐 ∆𝑍 = ∆𝐴
𝑍 = 𝑐𝐴 ∆𝑍 = 𝑐∆𝐴
𝑍 =𝐴±𝐵 (∆𝑍)2 = (∆𝐴)2 + (∆𝐵)2
𝑍 = 𝐴𝐵 or 𝑍 =
𝐴
∆𝑍 2 ∆𝐴 2 ∆𝐵 2
𝐵 ( ) =( ) +( )
𝑍 𝐴 𝐵
𝑍 = 𝐴𝑛 ∆𝑍 ∆𝐴
=𝑛
𝑍 𝐴
𝑍 = ln 𝐴 ∆𝐴
∆𝑍 =
𝐴
𝑍 = 𝑒𝐴 ∆𝑍
= ∆𝐴
𝑍

Calculating errors can most easily be done by using partial derivatives (derivative with respect to one specific
variable, while keeping the others constant). ∆𝑄𝑥 , ∆𝑄𝑦 , ∆𝑄𝑧 , … can be calculated for any general function given
by: 𝑄 = 𝑓(𝑥, 𝑦, 𝑧, … ). This yields:

𝜕𝑓
∆𝑄 = ∆𝑥
𝜕𝑥


This results in:

𝜕𝑓 2 𝜕𝑓 2 𝜕𝑓 2
∆𝑄 = √( ∆𝑥) + ( ∆𝑦) + ( ∆𝑧)
𝜕𝑥 𝜕𝑦 𝜕𝑧


Example

Exercise
A resistor with resistance 𝑅 carries a current 𝐼. The power 𝑃 dissipated as heat by the resistor is given by
𝑃 = 𝐼 2 𝑅. A resistor with 𝑅 = 330 Ω is used, the accuracy of 𝑅 is listed by the factory as 5%. The current is
measured: 𝐼 = 0,28 ± 0,01 𝐴.
Calculate the error in the power 𝑃 and write the final result in the correct notation.

Solution
Using the method of partial derivatives yields:

𝑃 = 𝐼 2 𝑅 = 25,872 𝑊
𝜕𝑃 2 𝜕𝑃 2
∆𝑃 = √( ∆𝐼) + ( ∆𝑅) = √(2𝐼𝑅∆𝐼)2 + (𝐼 2 ∆𝑅)2 = 2,2558 𝑊
𝜕𝐼 𝜕𝑅


So: 𝑃 = 𝑃 ± ∆𝑃 = 26 ± 3 𝑊

2.3 Dependent errors
When errors depend on each other, you cannot sum up the errors quadratically. The exact procedure to calculate
the final error depends on how the measured results interact with each other.

2

Downloaded by: svenlay | 148607@csgwesselgansfort.nl
Distribution of this document is illegal

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper svenlay. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 65507 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,99  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd