HF 4 COMBINATORIEK
Bij vraagstukken inzake telproblemen is
eigenlijk de eerste vraag altijd of de
volgorde van belang is. Indien de volgorde
van belang is heb je te maken met
permutaties, als de volgorde niet van belang
is met combinaties.
Voorbeeld ter verduidelijking:
Ik kies uit een HAVO 4 klas met 29
leerlingen een team van vijf personen voor een potje voetbal. Hier maakt de volgorde van
kiezen niet uit. Stel dat je het team Arda, Berra, Wiktor, Mo en Kelly kiest. Dit is hetzelfde als
het kiezen van het team Wiktor, Kelly, Mo, Arda en Berra. Hier is dus sprake van een
combinatie.
Ik kies uit een HAVO 4 klas met 29 leerlingen een klassenraad van drie personen waarbij ieder
een andere rol vervult, te weten: voorzitter, penningmeester en secretaris. Nu is volgorde wel
van belang. Want als ik bijvoorbeeld Rizgar (voorzitter), Nathalie (penningmeester) en Tommy
(secretaris) kies, is dit anders dan wanneer ik Nathalie (voorzitter), Tommy (penningmeester)
en Rizgar (secretaris) kies. Hier is sprake van permutaties.
Het aantal permutaties van een groep is natuurlijk altijd groter dan het aantal
combinaties.
Volgorde van belang (permutaties)
Als in een opgave zaken staan zoals:
- er wordt een top 3 samengesteld
- er wordt een bestuur gekozen met een voorzitter, penningmeester, secretaris
- boeken/cd’s worden in een bepaalde volgorde gelegd op een plank
- ik zet leerlingen in een rij om een schoolfoto te maken
Dan is de volgorde van belang en heb je dus te maken met een permutatie.
Het totaal aantal permutaties van een set wordt genoteerd met het teken ! (spreek uit faculteit).
Voorbeeld: ik wil alle 29 de leerlingen van HAVO 4 in een rij zetten zodat er een foto gemaakt
kan worden. Op hoeveel manieren kan dit? Ik hoop dat je meteen ziet dat volgorde hier van
belang is (want een rij die begint met Elijah, Irem, Salaheddine is een andere rij dan die begint
met Hussain, Mohamed en Abderrahmane). We hebben dus inderdaad te maken met een
permutatie en berekenen deze als volgt.
Op je rekenmachine reken je de faculteit van een getal als volgt uit (in dit voorbeeld dus 29!):
29 è math è PROB è 4 : !
1
, Practice makes perfect!
In bovenstaand voorbeeld keken we naar de permutaties van de gehele klas, het kan ook zo zijn
dat je maar een aantal uit een bepaalde populatie kiest. Ik kies bijvoorbeeld uit de klas van 29
leerlingen 4 leerlingen die een band moeten vormen met een lead singer, basgitarist, keyboard
en drummer. Ook hier hoop ik dat je meteen ziet dat volgorde van belang is. Immers de keuze
Genairo (lead singer), Alexander (basgitarist), Elanur (keyboard) en Ayman (drummer) is een
hele andere band dan Ayman (lead singer), Elanur (basgitarist), Genairo (keyboard) en
Alexander (drummer).
Het aantal mogelijkheden is dan:
Aantal mogelijkheden 29 ⋅ 28 ⋅ 27 ⋅ 26 = 570.024
Op je rekenmachine reken je dit “deel” van de faculteit als volgt uit:
math è PROB è 2: nPr è 29 nPr 4
Het eerste getal geeft aan uit hoeveel je kiest en het tweede getal hoeveel je er kiest (in dit
geval: ik kies uit 29 leerlingen er 4).
Nog een voorbeeld.
Aya heeft 4 RPG’s, 6 sport games en 8 first person shooters (FPS). Je zet deze op een plank.
Op hoeveel manieren kan dit? Je ziet: volgorde maakt uit, dus permutaties:
4 + 6 + 8 = 18 → 18!
Nu wat moeilijker. Op hoeveel manieren kan ik ze neerzetten als ik wil dat de FPS naast
elkaar staan?
11! ⋅ 8! = 1,61 ⋅ 10#$
Knap als je deze aan mij kunt uitleggen.
Met of zonder herhaling
Wat je je bij opgaven ook moet realiseren is dat soms dezelfde persoon/getal/mogelijkheid nog
een keer mee mag doen. Daarom is het ook altijd van belang om je af te vragen of er “herhaling”
mag optreden. Bijvoorbeeld: Damian G. kiest een nieuwe pincode. Hoeveel pincodes van 4
cijfers zijn er mogelijk als een cijfer vaker mag voorkomen? Elke keer heb je keuze uit 10
cijfers, dus
Aantal mogelijkheden 10 ⋅ 10 ⋅ 10 ⋅ 10 = 10.000
Als herhaling is toegestaan en de volgorde is van belang (zoals in bovenstaand voorbeeld)
spreek je van rangschikking met herhaling. Als je dan k elementen kiest uit een groep van n
elementen bereken je het aantal mogelijkheden met 𝑛% .
Voorbeelden: Dean wil een code van 7 cijfers maken. Hoeveel mogelijkheden zijn er? Als
herhaling is toegestaan: 10& = 10.000.000.
2
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper teubentess. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.