INCLUSIEF VOORBEELDEN.
In deze samenvatting staat alle theorie die hoort bij hoofdstuk 9 kansverdelingen, vwo 5 wiskunde A. Daarnaast vind je er per theorie-onderdeel ook een voorbeeld met uitgebreide uitleg.
VWO 5 Wiskunde A: SAMENVATTING VOOR HF9 KANSVERDELINGEN AnneBijles
Toevalsvariabele
Stel je voor dat je een dobbelsteen gooit. Het aantal ogen dat je krijgt (1, 2, 3, 4, 5 of 6) is een
toevalsvariabele. Waarom? Omdat het afhangt van het toeval of geluk hoeveel ogen je gooit. Elke
worp kan een andere waarde opleveren, en we weten van tevoren niet welke waarde dat zal zijn. Dat
is wat we een toevalsvariabele noemen: een variabele waarvan de uitkomst willekeurig is. Een
toevalsvariabele wordt vaak aangegeven met een letter (𝑋).
Voorbeeld toevalsvariabele:
Vraag: Stel je hebt een doos met vijf rode ballen en vijf blauwe ballen. Je plukt willekeurig één bal uit
de doos zonder te kijken. Wat zou de toevalsvariabele in dit scenario kunnen zijn?
Antwoord:
Een toevalsvariabele in dit scenario kan zijn het aantal rode ballen dat je willekeurig uit de doos
trekt. Bijvoorbeeld, als je een rode bal trekt, is het aantal rode ballen dat je hebt getrokken 1. Stel
je trekt een blauwe bal, dan is het aantal rode ballen dat je hebt getrokken 0. Dit aantal rode ballen
dat je trekt, varieert van 0 tot 1. Het is afhankelijk van welke bal je willekeurig uit de doos haalt, en
dat maakt het een toevalsvariabele.
Merk op: Een ander voorbeeld van een toevalsvariabele had uiteraard kunnen zijn het aantal blauwe
ballen dat je willekeurig uit de doos trekt.
De kans dat een toevalsvariabele 𝑋 gelijk is aan een getal 𝑥 wordt aangegeven als 𝑃(𝑋 = 𝑥). De
kansverdeling van een toevalsvariabele is een tabel met alle mogelijke waarden van de
toevalsvariabele en de bijbehorende kansen.
Voorbeeld kansverdeling van een toevalsvariabele:
Vraag: Je gooit met een zes-vlakkige speciale dobbelsteen, die er als volgt uit ziet:
• 1 keer het getal 1
• 2 keer het getal 2
• 3 keer het getal 3
Stel de kansverdeling op die hoort bij een worp met deze speciale dobbelsteen.
Antwoord:
Noem 𝑋 als de uitkomst van de worp met de dobbelsteen. In totaal zijn er zes vlakken waarop de
dobbelsteen kan vallen. Er is één vlak met uitkomst 1, daarom:
(
𝑃(𝑋 = 1) = )
Er zijn twee mogelijkheden om uitkomst 2 te gooien (van de zes mogelijkheden totaal), daarom:
+ (
𝑃(𝑋 = 2) = ) = ,
Er zijn drie mogelijkheden om uitkomst 3 te gooien (van de zes mogelijkheden totaal), daarom:
, (
𝑃(𝑋 = 3) = ) = +
De kansverdeling van een worp met deze speciale dobbelsteen is dus:
x 1 2 3
P(X=x) 1/6 1/3 1/2
In dit hoofdstuk wordt ervanuit gegaan dat je de somregel, productregel en complementregel nog
kent. Daarnaast beschouwen ze het concept van met en zonder terugleggen ook als voorkennis.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper AnneBijles. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.