100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
MAT2691 EXAM PACK 2023 €2,43   In winkelwagen

Tentamen (uitwerkingen)

MAT2691 EXAM PACK 2023

 1 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

QUESTIONS AND ANSWERS

Voorbeeld 4 van de 72  pagina's

  • 11 september 2023
  • 72
  • 2023/2024
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
avatar-seller
MAT2691
EXAM
PACK 2023
QUESTIONS WITH ANSWERS

,MAT2691
EXAM
PACK 2023

,QUESTION 1.1

Determine the following integrals

∫ ( 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 ) √2𝑎 3 + 3𝑏𝑥 2 + 6𝑐𝑥 + 𝑑 𝑑𝑥
SOLUTION

Let 𝑢 = 2𝑎𝑥 + 3𝑏𝑥 + 6𝑐𝑥 + 𝑑
Hint:
3 2


𝑑𝑢
= 6𝑎𝑥 2 + 6𝑏𝑥 + 6𝑐
𝑑𝑥 The main concept to maste
in Que 1.1 is the basic
integration. Since 𝑎𝑥 2 +
𝑑𝑢 = (𝑎𝑥
6 2 + 6𝑏𝑥 + 𝑐) 𝑏𝑥 + 𝑐 is a derivative of
𝑑𝑥
2𝑎 3 + 3𝑏𝑥 2 + 6𝑐𝑥 + 𝑑
𝑑𝑢
Therefore 𝑑𝑥 = makes it easy to integrate
6(𝑎𝑥 2 +𝑏𝑥+𝑐
using substitution.
𝑑𝑢
∫ ( 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 ) √𝑢
6(𝑎𝑥 2 + 𝑏𝑥 + 𝑐)
1
∫ √ 𝑢 𝑑𝑢
6
3
1 2
= × 𝑢2 + 𝑐
6 3
2 3
= 𝑢 +𝑐
18 2

1 3 2 3
= √(2𝑎𝑥 + 3𝑏𝑥 + 6𝑐𝑥 + 𝑑) +𝑐 ANS.
9

1.2

√𝑡𝑎𝑛 2 2𝑥 − 9
∫ 𝑑𝑥
𝑐𝑜𝑠 2 2𝑥
1
=∫ √𝑡𝑎𝑛 2 2𝑥 − 9 𝑑𝑥
𝑐𝑜𝑠 2 2𝑥



= ∫ 𝑠𝑒𝑐 2 √𝑡𝑎𝑛 2 2𝑥 − 9 𝑑𝑥

= ∫ 𝑠𝑒𝑐 2 𝑥 √(tan 2𝑥) 2 −3 2 𝑑𝑥

From the standard
2 (𝑥) (𝑥 )
= ∫ ′(𝑥) √ [𝑓(𝑥)] 2 − 𝑎 2 𝑑𝑥 = − 𝑎 𝑎𝑟𝑐 cos ℎ ( 𝑓 + 𝑓 √[𝑓(𝑥)] 2 − 𝑎 2 + C
2 𝑎 2

Since the derivative of 𝑡𝑎𝑛2𝑥 = 𝑠𝑒𝑐 2 2𝑥

, 2|Page MAT2691 OCT/NOV2010
𝑡𝑎𝑛 2 2𝑥−9 𝑑𝑥
∫√ 𝑐𝑜𝑠 2 2𝑥



=− 9 𝑎𝑟𝑐 cos ℎ 𝑡𝑎𝑛2𝑥 + 𝑡𝑎𝑛2𝑥 √ (𝑡𝑎𝑛2𝑥 ) − 9) + 𝐶
4 3 4

1.3


𝑠𝑖𝑛ℎ𝑥
𝑑𝑥
Hint:
1 + 𝑐𝑜𝑠ℎ𝑥
Que 1.3. The derivative of 1+
From
𝑐𝑜𝑠ℎ𝑥 is 𝑠𝑖𝑛ℎ𝑥

𝑓′(𝑥) Since now we know that the
∫ = 𝑙𝑛 | 𝑓(𝑥) | + 𝑐 question consist of the function and
𝑓(𝑥)
its derivative, therefore one of the
Since the derivative of 1 + cosh 𝑥 = sinh 𝑥 standard formulae has to be used
i.e.

=∫ 𝑠𝑖𝑛ℎ𝑥 𝑑𝑥 𝑙𝑛= |1 + cos ℎ 𝑥 | + 𝑐 ANS.
1+𝑐𝑜𝑠ℎ𝑥

1.4
𝜋
4 Que 1.4 To be able to integrate this
∫ 𝑠𝑖𝑛 3 𝑥. 𝑐𝑜𝑠 3 𝑥 𝑑𝑥 question easily the function has to
0
𝜋
be simplified first. Usually with this
type of questions we have to
∫04 𝑠𝑖𝑛 3 𝑥( ( 𝑐𝑜𝑠 2 𝑥 )( 𝑐𝑜𝑠𝑥 ) )𝑑𝑥 From { 𝑐𝑜𝑠 2 𝑥 = 1 − 𝑠𝑖𝑛 2 𝑥} simplify the function and leave it in
𝜋
the form
=∫04 𝑠𝑖𝑛 3 𝑥((1 − 𝑠𝑖𝑛 2 x)(cosx))dx
𝜋
= ∫04 𝑠𝑖𝑛 3 𝑥𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛 5 𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥 In this form it can easily be solved
𝜋 𝜋 using the standard equations.
𝑠𝑖𝑛 4 𝑥 𝑠𝑖𝑛 6 𝑥
4 4


=[ ] −[ ]
4 0 6 0

𝜋
4 𝜋 𝑠𝑖𝑛 6 ( )
4

= [𝑠𝑖𝑛 ( )− ]
4 6
1
=
24

=0.042 ANS.

1.5

𝑑𝑥

𝑥2 + 4𝑥 + 20

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper brighttutor10. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,43. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75323 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,43
  • (0)
  Kopen