100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
SOLUTIONS MANUAL for Plasma Physics: An Introduction 2nd Edition by Fitzpatrick Richard | Complete 9 Chapters) €29,99   In winkelwagen

Tentamen (uitwerkingen)

SOLUTIONS MANUAL for Plasma Physics: An Introduction 2nd Edition by Fitzpatrick Richard | Complete 9 Chapters)

 107 keer bekeken  0 keer verkocht
  • Vak
  • Plasma Physics: An Introduction 2nd Edition
  • Instelling
  • Plasma Physics: An Introduction 2nd Edition
  • Boek

SOLUTIONS MANUAL for Plasma Physics: An Introduction 2nd Edition by Fitzpatrick Richard. ISBN- _TABLE OF CONTENTS_ Chapter 1 – Plasma Parameters Chapter 2 – Charged Particle Mot ion Chapter 3 – Collisions Chapter 4 – Plasma Fluid Theory Chapter 5 – Waves in Cold Plasmas Chapter 6 – Wave...

[Meer zien]

Voorbeeld 4 van de 101  pagina's

  • 18 september 2023
  • 101
  • 2023/2024
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Plasma Physics: An Introduction 2nd Edition
  • Plasma Physics: An Introduction 2nd Edition
avatar-seller
, CHAPTER 1

Chapter 1



1.1 (a) Consider a one-dimensional slab of plasma whose whose bounding surfaces are nor-
mal to the x-axis. Suppose that the electrons (whose mass, charge, and number density
are me, −e, and ne, respectively) displace a distance δxe parallel to the x-axis, whereas
the ions (whose mass, charge, and number density are mi, +Z e, and ni = ne/Z, re-
spectively) displace a distance δxi. The resulting charge density that develops on the
leading edge of the slab is
σ = −e ne δxe + Z e ni δxi = e ne (δxi − δxe). (1)

An equal and opposite charge density develops on the opposite face of the slab. The
x-directed electric field generated inside the slab is
σ e ne
E =− =− (δx − δx ). (2)
x i e
ǫ0 ǫ0
The equation of motion of an individual electron inside the slab is thus

.. e2 ne
me δ xe = −e Ex = (δxi − δxe). (3)
ǫ0
Likewise, the equation of motion of an individual ion is

.. Z 2 e2 n i
mi δ xi = Z e Ex = − (δxi − δxe). (4)
ǫ0
Let us search for simultaneous solutions of Equations (3) and (4) of the form

δxe(t) = δxˆe cos(ω t), (5)
δxi(t) = δxˆi cos(ω t). (6)

It follows that

(ω2 − Π e2) δxˆe + ω p2 e δxˆi = 0, (7)
Πi2 δxˆe + (ω2 − ω p2 i) δxˆi = 0, (8)
where Πe = (e2 ne/ǫ0 me)1/2 and Πi = (Z 2 e2 ni/ǫ0 mi)1/2. The solutions are ω = 0
with δxˆe = δxˆi, and ω2 = Π 2 + Π 2 with Π 2 δxˆe + Π 2 δxˆi = 0. The former mode
e i i e
corresponds to a uniform translation of the slab. The latter mode is a plasma oscillation
whose frequency, Π, satisfies
1/2
Π = Πe2 + Πi2 , (9)

1

,2 □ Plasma Physics: An Introduction (Second Edition): Solutions to Exercises

and whose characteristic ratio of ion to electron displacement amplitudes is
δxˆi Π i2 me
δxˆ = − = −Z i . (10)
e Π e2 m
(b) Suppose that the electrons, whose temperature is Te, are distributed according to the
Maxwell-Boltzmann law,

ne + δne = ne exp(+e δΦ/Te), (11)

where ne is the equilibrium number density, and δne is the number density perturbation
due to the perturbing potential δΦ. Likewise, the ions, whose temperature is Ti, are
distributed according to

ni + δni = ni exp(−Z e δΦ/Ti). (12)

Thus, in the limit that δΦ is small, we obtain
e ne
δne = δΦ, (13)
Te
Z e ni
δni = − δΦ. (14)
Ti
If δΦ is a consequence of a small perturbing charge density, δρext, then the total charge
density is
2 2
!
e2 ne Z e ni
δρ = δρext + Z e δni − e δne = δρext − + . (15)
Te Ti
Thus, Poisson’s equation,
2 δρ
∇ δΦ = − , (16)
ǫ0
yields 2
2 δρext
∇ – δΦ = − , (17)
λ 2D ǫ 0

where !2 !2 !2
1 1 1 1
= + , (18)
λD 2 λD e λD i
with λD e = (ǫ0 Te/ne e2)1/2 and λD i = (ǫ0 Ti/ni Z 2 e2)1/2. Comparison of Equation (17)
with Eq. (1.14) in the book reveals that λD is the effective Debye length.
1.2 It is reasonable to assume, by symmetry, that the perturbed potential is a function only of the
radial spherical coordinate r. In other words, δΦ = δΦ(r). Thus, the governing differential
equation becomes !
1 d 2 dδΦ 2
2 r – 2 δΦ = 0 (19)
r dr dr λD
for r ≠ 0. However, in the limit r → 0 we expect the perturbed potential to approach the
Coulomb potential: i.e.,
q
δΦ → (20)
4π ǫ0 r

, Chapter 1 □ 3

as r → 0. We also expect the potential to be well behaved in the limit r → ∞ . Let δΦ =
V(r)/r. Equation (19) transforms to give
d2V 2
− V = 0. (21)
dr2 λD2
The solution that is consistent with the boundary conditions at r = 0 and r = ∞ is
√2 r
V(r) = q . (22)
4π ǫ0 exp − λD
Thus, √
δΦ(r) = q 2r . (23)
4π ǫ0 r exp − λD

According to Poisson’s equation, the charge density of the shielding cloud is

δρ(r) = −ǫ0 ∇2δΦ. (24)

However, according to the governing differential equation,
2 2
∇ δΦ = δΦ (25)
λD2
for r ≠ 0. Hence, √
2q 2r
δρ(r) = − exp − . (26)
4π r λD2 λD
The net shielding charge contained within a sphere of radius r, centered on the origin, is
∫ r ∫ √ ′
′ ′2 ′ 2q r ′ 2r ′
Q(r) = 4π δρ(r ) r dr = − r exp − dr . (27)
0 λD 0 λD
2

Thus, √ √
∫ √

x.λD r/ 2
λD r/ 2 λD r/ 2
Q(r) = −q x e−x dx = −q −x e− 0 + e− dx , (28)
0 0 x
.
which reduces to √2 r √ 2r
Q(r) = −q 1 − 1 + exp − . (29)
λD λD
1.3 Consider a one-dimensional slab of plasma whose bounding surfaces are normal to the x-
axis. Suppose that the electrons (whose mass, charge, and number density are me, −e, and
ne, respectively) displace a distance δxe parallel to the x-axis, whereas the ions remain sta-
tionary. The resulting charge density that develops on the leading edge of the slab is

σ = −e ne δxe. (30)

An equal and opposite charge density develops on the opposite face of the slab. The x-
directed electric field generated inside the slab is
σ e ne
E =− = δx . (31)
x e
ǫ0 ǫ0

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper AcademiContent. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €29,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 79223 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen

Laatst bekeken door jou


€29,99
  • (0)
  Kopen