100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Enzymologie - volledige samenvatting €6,49   In winkelwagen

Samenvatting

Enzymologie - volledige samenvatting

2 beoordelingen
 152 keer bekeken  12 keer verkocht
  • Vak
  • Instelling

Dit document bevat de volledige samenvatting van het vak enzymologie gedoceerd door Andy Wullaert. Het bevat uitgeschreven voorbeelden en extra notities die tijdens de les vermeld worden. Ook 'lege' kaders: deze duiden op belangrijke formules (+ uitwerkingen) die je best zelf ook eens uitschrijft.

Voorbeeld 4 van de 55  pagina's

  • 21 september 2023
  • 55
  • 2022/2023
  • Samenvatting

2  beoordelingen

review-writer-avatar

Door: ambervermeiren • 3 maanden geleden

review-writer-avatar

Door: lenkavb05 • 9 maanden geleden

avatar-seller
ENZYMOLGIE
BIOKATALYSE EN BIO-ENERGETICA (DEEL 1)

2e Bachelor Biomedische Wetenschappen
2e Bachelor Biochemie en Biotechnologie




Universiteit Antwerpen

Gedoceerd door:

Andy Wullaert

, RT

HOOFDSTUK 1: DE ENZYMATISCHE KATALYSE
KORTE GESCHIEDENIS


• 19e eeuw: onderzoek naar fermentatie en verteringsprocessen
1) 1877: het woord ‘enzym’ werd geïntroduceerd door Frederick Kühne à en = in, zyme = gist
2) 1963: eerste aminozuur sequencing van een enzym (bovine pancreatic ribonuclease A)
3) 1965: eerste X-ray van een enzym (lysozyme)


ROL VAN ENZYMEN


Enzymen:
• = katalysatoren in biologische systemen
• Bijna alle biochemische reacties worden gekatalyseerd door enzymen
o Katalyseren omzetting van een substraat (S) in een product (P)

Bijna alle enzymen zijn eiwitten (+ cofactor).
Soms komen RNA-moleculen als enzymen voor: ribozymen.

Katalytische activiteit van eiwit-enzymen is afhankelijk vd integriteit van hun eiwit conformatie
• Als het enzym gedenatureerd/gedissocieerd in z’n subeenheden à katalytische activiteit (meestal) verloren
• Als het enzym wordt afgebroken tot z’n individuele AZ à katalytische activiteit altijd volledig vernietigd
• Dus zowel primaire-, secundaire-, tertiaire- als quaternaire structuur zijn essentieel

Gelijkenissen met chemische katalysatoren: Verschillen met chemische katalysatoren:
• Verhogen de snelheid vd reactie door verlaging vd • Werken onder mildere condities (T = 37 °C / pH = 7)
activeringsenergie • Hoge specificiteit voor binding substraat
• Blijven onveranderd na de reactie (worden niet • Mogelijkheid tot regulatie door externe factoren
verbruikt) (zowel up- als down gereguleerd (zie H6))


KINETIEK VAN CHEMISCHE REACTIES: EEN HERHALING


BEGRIPPEN UIT DE THERMODYNAMICA

Cellulaire energieconversies kunnen bekeken worden in de context van de ‘wetten van de thermodynamica’.
Energie halen uit zonlicht of chemische bindingen (o.a. suiker) (katabolisme = afbraak) wordt gekoppeld aan anabole processen
(= opbouw) die energie vereisen.

Metabolisme = katabolisme + anabolisme

GIBBS VRIJE ENERGIE:

• J. Willard Gibbs: theorie over energieveranderingen tijdens een chemische reactie
o G = Gibbs vrije energie-inhoud van een molecule
o H = enthalpie = interne energie à ∆H = maat voor veranderingen in aantal en soort bindingen bij een reactie
o S = entropie = graad van wanorde (∆S is positief als wanorde stijgt)
o T = absolute temperatuur (K)
• Een reactie gebeurt enkel spontaan wanneer ∆G negatief is
• Reacties met negatieve ∆G = exergonisch proces à reactie zal spontaan verlopen, er komt energie/warmte vrij
• Reacties met positieve ∆G = endergonisch proces à reacties zal niet spontaan verlopen, er is energie nodig om deze
reactie door te laten gaan

1

, RT
DE EVENWICHTSCONSTANTE K EQ



• Stel de chemische reactie: aA + bB « cC + dD
• Na bepaalde tijd wordt evenwicht bereikt à concentraties van A,B en C,D veranderen niet meer
• Op het moment van evenwicht kan er een evenwichtsconstante Keq gedefinieerd worden
o = verhouding van producten / reagentia
• Keq heeft geen eenheden
• Hoe groter K, hoe meer reagentia (A en B) zijn omgezet naar producten (C en D) om chemisch evenwicht te bereiken
à evenwicht van de reactie naar rechts
• Hoe kleiner K, hoe minder reagentia zullen zijn omgezet naar producten om een chemisch evenwicht te bereiken
à evenwicht van de reactie naar links

VERBAND TUSSEN ∆G EN K EQ



• Gibbs vond dat ∆G ve chemische reactie is afhankelijk van de initiële [reagentia] (A en B) en [producten] (C en D)
• ∆G0 = Gibbs vrije energie verandering onder standaard chemische condities: alle concentraties 1M, 25 °C en 101,3 kPa)
o De ∆G0 is dus een constante voor elke specifieke chemische reactie
• In biochemische reacties wordt ∆G0 ’ gebruikt = ∆G gemeten bij pH 7, alle concentraties 1 M, 25 °C en 101,3 kPa

Voor biochemische reacties geldt dus:



Wanneer het chemisch evenwicht bereikt is, zal ∆G = 0 zijn en is

Hieruit volgt dat:



∆G0’ en K’eq = constante waarden voor een specifieke biochemische reactie (gemeten bij pH 7, 25°C en 101,3 kPa) voor elke
chemische reactie à functie van de verhouding van de concentraties producten en reagentia bij evenwicht

Het verband tussen ∆G0’ en K’eq kan als volgt weergegeven:
• Hoe groter K’eq, hoe negatiever ∆G0’ zal zijn
• Een sterk exergonische reactie zal dus een grote K’eq hebben en een sterk negatieve ∆G0’.

Als K’eq is: ∆G0’ is: Beginnend met alle componenten 1 M, zal de reactie:
> 1,0 Negatief Vooruit gaan
1,0 0 In evenwicht blijven
< 1,0 positief Terug gaan

De eenheden van ∆G0 en ∆G0’ zijn joules/mol (calorieën/mol)

Let op: in tegenstelling tot ∆G0’ (= constante waarde) is ∆G is variabel en afhankelijk van [reagentia] en [producten].
Het doorgaan/spontaneïteit van een reactie hangt af van ∆G!


3.2 HERHALING: CHEMISCHE REACTIESNELHEDEN

De reactiesnelheid hangt af van een groot aantal factoren, waaronder:
• De concentratie (of activiteit) van de reactanten
• De temperatuur
• De druk
• De aanwezigheid van de katalysator
• De aanwezigheid van straling, bijvoorbeeld fotokatalyse, fotochemie
2

, RT
DE REACTIESNELHEID V

Reactiesnelheid = verandering vd [ ] van reagentia of producten over een tijdsinterval (∆t)
• rR + sS à pP + qQ (- teken voor [R] en [S] omdat die concentraties afnemen)
• Dit levert de gemiddelde reactiesnelheid (V)

Unieke gem. reactiesnelheid: Houdt rekening met de stoichiometrie van de reactie

Onmiddellijke reactiesnelheid: tijd steeds korter genomen, met ∆t bijna 0
• = reactiesnelheid op een welbepaald moment
• = afgeleide van de unieke gem. reactiesnelheid

SNELHEIDSWET

De snelheid (V) voor een reactie is altijd en wiskundige functie met 1 of meer reagentia met een exponent: V = k * [R] ρ * [S] σ
• [R] en [S] = concentraties van stof R en S
• k = snelheidsconstante
• ρ en σ = orde van de reactie = 0, 1, 2, 3, …
o 0e orde: geen afhankelijkheid van V op de [reactant]
o 1e orde: lineaire afh. van V op de [reactant]
o 2e orde: parabolische afh. van V op de [reactant]
o 3e orde: kubieke afh. van V op de [reactant]

De orde van de reactie wordt ook bepaald door gezamelijke afhankelijkheden van de snelheid i.f.v. de verschillende reactanten
• Als ρ en σ beide 1 zijn (dus R en S vertonen beide lineaire afhankelijkheid) dan is de reactie in totaal van de 2e orde

De eenheid van de snelheidsconstante k is afhankelijk van de orde van de reactie (zie cursus p12)
• De eenheid van de snelheid (V) is immer altijd M.s-1

IRREVERSIEBELE EERSTE ORDE REACTIE: A à B

De onmiddellijke reactiesnelheid kan uitgedrukt worden als: V = d[B]/dt = - d[A]/dt
• In eerste orde is de snelheid proportioneel tot [A] en geldt dus: V = = - d[A]/dt = k . [A]

Als we nu de ∆[A] i.f.v. de tijd willen uitdrukken kan - d[A]/dt = k . [A] geïntegreerd worden en krijg je:




Dan krijg je: ln[A]t / [A]0 = - kt en ln[A]t = ln[A]0 - kt (rechte curve)
Omgevormd wordt dit: [A]t/[A]0 = e -kt en [A]t = [A]0 e -kt (hyperbolische curve)

Door bovenstaande reacties vergelijkingen uit te tekenen (zie cursus p14) kan de snelheidsconstante (k) van een eerste orde
irreversiebele reactie bepaald worden. Het is namelijk de rico van het verminderen van [A] overheen de tijd

REVERSIBELE EERSTE ORDE REACTIES

Meeste chemische reacties zijn echter reversibel
• Bij deze reversibele reactie geldt: - V = d[A]/dt = - k1[A] + k-1[B]
• Bij evenwicht is V = 0 en dus: 0 = - k1 [A]eq + k-1 [B]eq à

De evenwichtsconstante (Keq) is niet alleen de verhouding tussen de [reagentia] en [producten] (zoals hierboven beschreven),
maar ook een verhouding van de snelheidsconstanten van beide reversiebele reacties.
3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper StudentBi0med. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 66579 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  12x  verkocht
  • (2)
  Kopen