100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary 3.6 Probleem 6

Beoordeling
3,0
(1)
Verkocht
1
Pagina's
14
Geüpload op
25-08-2017
Geschreven in
2016/2017

Comprehensive summary Psychology, E & D, Course 3.6, Understanding DLYIXSEA & DY5C4LCUL14, Literature Problem 6









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
25 augustus 2017
Aantal pagina's
14
Geschreven in
2016/2017
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Michelle van Diën – 413154md
Problem 6. Developing arithmetic skill: Procedural or conceptual?
Baroody, A. J., Bajwa, N. P., & Eiland, M. (2009). Why can’t Johnny remember the basic facts?.
Developmental Disabilities Research Reviews, 15(1), 69–79. doi:10.1002/ddrr.45
Memorizing the basic number combinations, such as 9 + 7 = 16 and 16 − 9 = 7, is a punishing and
insurmountable task for children with difficulties learning mathematics. Two perspectives on such learning
lead to different conclusions about the primary source of this key learning difficulty.
● Conventional wisdom (the Passive Storage View): memorizing a basic fact is a simple form of learning—
merely forming and strengthening an association between an expression and its answer. The two primary
reasons this simple form of learning does not occur:
1. Inadequate practice.
2. A defect in the learner.
● Number sense perspective (Active Construction View): memorizing the basic combinations entails
constructing a well-structured or -connected body of knowledge that involves patterns, relations, algebraic
rules, and automatic reasoning processes, as well as facts.  Fluency with the basic number combinations
begins with and grows out of number sense. Aspects of number sense critical to such fluency begin to
develop in the preschool years. The primary cause of problems with the basic combinations, especially
among children at risk for or already experiencing learning difficulties, is the lack of opportunity to develop
number sense during the preschool and early school years.

Memorization of the basic number combinations, incl. single-digit addition items (e.g. 9+3=12) and related
subtraction items (e.g. 12-9=3), a central goal of elementary instruction.
A major stumbling block for many schoolchildren.
Problems more acute among children at-risk for poor mathematics achievement or already
experiencing mathematics difficulties (MD). (At-risk indicators: low family income; a single, poorly
educated, or teenage parent; minority status; a physical disability; or emotional difficulties.)

HOW DO CHILDREN MEMORIZE THE BASIC COMBINATIONS?
Children progress through 3 phases in learning a basic combination or a family of related combinations:
Phase 1: Counting strategies (using object or verbal counting to determine answers);
Phase 2: Reasoning strategies (using known facts and relations to deduce the answer of an unknown
combination);
Phase 3: Mastery (efficiently producing answers from a memory network).
Phases 1+2 characterized by conscious or deliberate and relatively slow cognitive processes. Phase 3
characterized by nonconscious or automatic and relatively fast cognitive processes.
Phase 3 achieved by:
● Rote memorization. Produces routine expertise—knowledge that can be applied efficiently and
appropriately to familiar tasks but not flexibly to new tasks (mastery with limited fluency). OR
● Meaningful memorization. Yields a rich and well-interconnected web of factual, strategic (procedural),
and conceptual knowledge.  Adaptive expertise—well-understood knowledge that can be applied
efficiently, appropriately, and flexibly to new, as well as familiar, tasks (mastery with fluency).
Passive Storage View: how basic combinations are memorized by rote; Active Construction View: how
they are memorized meaningfully. These views provide different explanations for how Phases 1 and 2 are
related to Phase 3 and the nature of Phase 3 itself.

Passive Storage View: Phases 1 and 2 can Facilitate, But are Not Necessary for, Memorizing Facts
Memorizing a basic number fact by rote is a simple nonconceptual process of forming a bond or
association between an expression and its answer. Each basic fact is stored discretely in a factual memory
network. Phase 3 consists of a single process, fact recall, which entails the automatic retrieval of the
associated answer to an expression. Arithmetic knowledge is componential in nature.; The fact-retrieval
network of the brain is autonomous and operates independently from the conceptual or procedural

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
7 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MichelleEUR Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
156
Lid sinds
8 jaar
Aantal volgers
108
Documenten
137
Laatst verkocht
10 maanden geleden

3,5

32 beoordelingen

5
3
4
11
3
16
2
2
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen