100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete Lecture Material + Notes - Behavioural Data Science - 7201703PXY - Grade: 9 €7,99   In winkelwagen

College aantekeningen

Complete Lecture Material + Notes - Behavioural Data Science - 7201703PXY - Grade: 9

 9 keer bekeken  0 keer verkocht

With these lecture notes, I managed to get a 9 on the exam.

Voorbeeld 4 van de 51  pagina's

  • 26 september 2023
  • 51
  • 2021/2022
  • College aantekeningen
  • Denny borsboom
  • Alle colleges
Alle documenten voor dit vak (2)
avatar-seller
jaimyvantrigt
Complete Lecture Material +
Notes Behavioural Data Science
Lecture 1 – A Dialogue on Theories, Phenomena, and Data..................................................................2
Lecture 2 – Complexity and Network Models......................................................................................13
Lecture 3 – The New World of Behavioural Data.................................................................................19
Lecture 4 – Binary Classification..........................................................................................................28
Lecture 5 – Bayesian Inference............................................................................................................38
Lecture 6 – The Ultimate Debate.........................................................................................................47

,Lecture 1 – A Dialogue on Theories, Phenomena, and
Data
Behavioural Data Science

Overview of this lecture
 Overview of the course
 Behavioural Data Science: task and scope
 Interplay between data and theory
o Data
o Phenomena
o Theory
 The role of mathematical modelling
 Future directions


Overview of the Course
 Lecturers: Denny Borsboom & EJ Wagenmakers, plus guests
 Support: Romy Leferink
 Classes:
1. Introduction and theory (DB)
2. Network models for clinical psychology (DB)
3. Big Behavioural Data (DB)
4. Binary Classification and Machine Learning (EJ)
5. Bayesian Inference (EJ)
6. Bayes versus Frequentism Debate (BD & EJ)
 This lectures are the exam material! Papers support the lectures but are not themselves
exam material
 Questions about course setup to Romy
 Questions about material to Denny and EJ
 Https://canvas.uva.nl/courses/20281/modules
 Exam: 25 MC questions + 1 Essay

There will not be weekly assignments
The propaedeutic thesis is a replacement for the WA

What is Behavioural Data Science?
Revolves around the use of behavioural data and sources to further psychology and behavioural
science.

Behavioural Data Science is a multidisciplinary scientific field that aims to facilitate understanding,
prediction, and change of human behaviour through the analysis of behaviourally defined variables
as they arise in large datasets ("Big Data"), typically gathered using modern digital technology (e.g.,
online or through mobile devices) and analysed with techniques for detecting patterns from high-
dimensional data (e.g., machine learning).

A merge of statistical analysis, informatics, simulation, mathematical theorising, and new data
registration techniques.

,Understanding, prediction, and change
Understanding: construction of psychological theories to explain behaviour
Prediction: application of statistical models to predict behaviour
Change: development of interventions to change behaviour
Control --> predictable change with intervention, could be troublesome in psychology

The complexities of human behaviour
 Human behaviour is at the root of many of the most central problems of our time: COVID-19
spread and climate change, but also war and famine have important behavioural
components
 Human behaviour is "possibly the most difficult subject ever submitted to scientific analysis"
(Skinner, 1987)
 Yet standard methods to study it are remarkably simple: questionnaires, tests, and small-
scale experiments
 However, recently, new sources of data are being mined and these offer new ways of
approaching old questions...

The golden age of social science
The new availability of data science is giving us real-time access to human behaviour
We are entering a golden age of social science




Example of a polarised and segregated network on Twitter. The network visualises retweets of
political hashtags from the 2010 US midterm elections. The nodes represent Twitter users and there

, is a directed age from not i to node j if user j retweeted user i. Colours represent political preference:
red for conservatives and blue for progressives.

Information is being sent mainly from democrats to democrats and republicans to republicans. The
echo-chamber effect. Little information is being shared between the two groups.
If we cannot understand why this happens, we cannot hope to influence this behaviour in the
future.

The architecture of the data world
Data
 Data are representations of observations
 Observation example: "Pete correctly solves IQ test item 36"
 Representation: the row that represents Pete has a 1 in the column that represents the IQ
item
 Typically, data are structed in rows and columns, i.e., in a spreadsheet
 Rows represent cases, while columns represent features/properties/attributions
 The values in the columns represent a variable
 Variables are always constructed




Phenomena
 Phenomena are robust features of the world
 For instance, the positive manifold of intelligence, the robust correlation between insomnia
and depression, the effect of time pressure on accuracy
 Important: Phenomena are not themselves data
 Rather, phenomena are evidenced by patterns in the data
 Because psychology is very complex, we often need advanced statistical models to "see" the
patterns

Theories
 There are many kinds of theories, but we are often interested in explanatory theories
 An explanatory theory is a set of principles that aims to explain phenomena.
 You don't try to explain the data, only the phenomena. You only try to explain the
data when fraud is suspected
 Typically you don't explain data, you explain features of the data.
 Differences in gender
 Positive correlations
 Non-linear growth in cognitive development
 Etc.
 It describes a world in which the phenomena would follow "as a matter of course "
 Coming up with a good theory is a creative act, but it can be systematised and practised.
 Ideally, in behavioural data science we are after mathematically formulated models

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jaimyvantrigt. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 62890 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99
  • (0)
  Kopen