100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Grade 9.6!! 2.5 Psychometrics: Worked Example DETAILED Notes: answers + explanations FSWP2-052-A €7,99   In winkelwagen

Samenvatting

Summary Grade 9.6!! 2.5 Psychometrics: Worked Example DETAILED Notes: answers + explanations FSWP2-052-A

 25 keer bekeken  1 keer verkocht

Extensive notes on every worked example including correct answers as well as further explanations. Received grade 9.6 (average was 5.6)

Voorbeeld 3 van de 29  pagina's

  • 5 oktober 2023
  • 29
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (85)
avatar-seller
christinauhlenbruck
Wo r k ed ex a m p l e 1 :( H 3




I. Standardized scores:

The total number of correctanswers is transformed to a T-score which has mean 50 andSD 20.

Between which I-scores will approx. 95% the
of population scores lie?

In normal distribution, the lower bound is at -1.96 SDs /orappr.2 SDS) below the mean and the

upper bound is at1.96 SDS above the mean. Thus, the 95%CI lies between a T-score of

50 11.96 28) 50 11.96 * IM*SDnew
-
=
10.8
=

and
+




20) 89.2 (10
+ =
and 90) new




Describe the distribution ofscores:Descriptives -
Explore +
"correct scores" as dependent

skeweness and kurtosis values should be divided by their
·




SES, this value should be compared to -

2 and 2.


Ifthe value for skeweness is larger than 2:distribution

is
negatively skewed
↳ If
t he value for skeweness is larger than 2:distribution


is positively skewed
-



8,975 If kurtosis value greater than -


2:peak
o fdistribution is
1,569
+00 flate


greater than 2:Peakis too sharp
skeweness 1-8,975):slightly negatively skewed butnotsign.!

->
Kurtosis(1,69):peak is sharp butn ot significantly!
Kolmogorox-smirnox test:is significantK.001), indicating a deviation from a normal distr.

ibution! unsignificant:normal distribution
1K.S.- testis very conservative!


calculate
the z-scores and the T-scores:

The Z-score is a standard score with a mean of0 and SD of 1, which is calculated using Raw
scores, the mean of the raw scores and sp of the raw scores. The T-score is a converted

Standardized score, intended to have values thatppl find easier to understand.

The Escore is convertedinto a new standard score IT-score) by multiplying the E-score with

the SD ofthe new score (28) and adding the mean ofthe new score (50)
1) Analyze, Descriptive Statistics' Descriptives X Save standardized variables (E- scores)
2.) Transform, compute to variable T
calculate

T RND
=

120x2-20r 50) +




T- scores based on raw scores

2-scores wereonly standardized, notnormalized

, percentile
2.5,97.5

calculate
9 5% interval of the scores using percentile ranks

1.) Analyze' Descriptive Statistics Explore: T-variable in dependentl ist

statistics X percentiles, Paste

2)I n syntax, change: / Percentiles (5,10,25,50,75,90,95) HAVERAGE
intO

↑Percentile (2.5,97.5) HAVERAGE to gett h e lowest and highest2.5% percentiles
The answer differs from a) bc lower bound is 7 andupper is 92 (VS.10190)

because ata) we assumed a normal distribution, while we DON'T assume a normal distrib-

ution when we use percentiles.



percentile rankS
#


To make norm scores, one can use percentile ranks andp-values thatstem from the standard normal

distribution:

both percentile ranks and p-values indicate the yof ppl with an equal or lower score.

percentiles:calculated using all the raw scores wo
making assumption aboutdistribution ofthe scores


p-values:calculated using only mean and sp ofraw scores and
assuming a standard normal

IP-values:normality assumption
distribution

whether you use percentiles or p-values depends on whether you can assume a normal distribution in the


population or not


p-value preferred by it's less influenced by sample fluctuations

When no information known aboutpopulation and whether it's normally distributed, percentile ranks best to use

calculate p-value stemming from the standard normal distribution (z-scores):

1) Transform, compute to calculate percentile ranks using the standard normal distribution

CDF. NORMAL (Enr cor, 0,1
mean SD

CDF:cumulative distribution function;needed to calculate
the p-value for a certain z- score.

we know thata standardnormal distribution is a perfectly norm. dist. With mean 0 andSD1



calculate
percentives for the number corrects cores (raw scores
1) Transform, Rank cases Variables:h r cor ranktypes:X
fractional rankas


INTERPRETATION:

The percentile rank for a grade of 3.9 is 18.34 and p-value is 0,17



3
15.34% ofthe students hada grade of3.9 or lower.
don't differ a lot:so we can say the distribution
1
17%of the students had a grade of3.9 or lower.
t he
of
grades is fairly normal


use p-values when we can safely assume the distribution ofscores to be normal!

Ifnot:use smith that's not
assuming normal distribution (e..:percentile ranks)

, .Normalized scores
#




normalized T-score has
A to be caculated: 50
Meannew= sDrew=20
O RMALIZATION:
M


1) compute directpercentile ranks Rank Cases


2) convert the percentile ranks into standard scores (Nar_20r)
where the actual normalization oft he scores takes place be the standard scores are now no


longer based on the raw scores (like z-scores), buton percentile ranks!

3) compute convertedstandard score with mean 50 and SD 20 +



ur -cor + 20 50
+




Difference btw F-Scores from I . andIII.:

·The T-scores and F-norm scores differ on same Grade (e.9.:Grace 6:61/63). They differ because

the T-scores were notn ormalized, they were only standardizedIZ-Scores). The T-norm scores were

both standardized and normalized. raw scores, z-scores transformation


·F scores:transformations oft he z-scores (Standardized, notnormalized) - use raw scores


Why Iscores have same distribution ofthe raw scores (thus notnecessarily norm all
·

F-norm scores:transformation t he
of normalized scores. perientile+ z-scures transformation
-




·Standard scores calculated based on assump. of a normal distribution

the course coordinator shouldprefer the normalized scores to be sure thatthe assumption of a


normal distribution ofthe scores is met.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper christinauhlenbruck. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64438 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99  1x  verkocht
  • (0)
  Kopen