100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete exam material of Introduction to Time Series and Dynamic Econometrics, Bachelor Econometrics, Vrije Universiteit Amsterda, €8,99
In winkelwagen

College aantekeningen

Complete exam material of Introduction to Time Series and Dynamic Econometrics, Bachelor Econometrics, Vrije Universiteit Amsterda,

 88 keer bekeken  4 keer verkocht

Complete summary of the exam material for the course Introduction to Time Series and Dynamic Econometrics in the 3th year of the Bachelor of Econometrics at the Vrije Universiteit Amsterdam, or the minor Applied Econometrics. The summary is in English. All lectures are in the summary, with extra i...

[Meer zien]

Voorbeeld 3 van de 26  pagina's

  • 11 oktober 2023
  • 26
  • 2023/2024
  • College aantekeningen
  • K. moussa
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
charhoog
Introduction to Time Series and Dynamic
Econometrics
Charlotte Hoogteijling
October2023


Contents
0 Preparatory Notes 3
0.1 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Law of Total Expectation . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Geometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Basic Properties of Time Series 4
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Strict and weak stationarity . . . . . . . . . . . . . . . . . . . . . 4
1.3 Unconditional and conditional moments . . . . . . . . . . . . . . 5
1.4 Sample moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Autocorrelation function (ACF) . . . . . . . . . . . . . . . . . . . 5
1.6 White Noise (WN) and Random Walk (RW) processes . . . . . . 6
1.7 Sources of non-stationarity . . . . . . . . . . . . . . . . . . . . . 6
1.8 Lag and difference operator . . . . . . . . . . . . . . . . . . . . . 6
1.9 Wold decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Linear process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Properties of ARMA Models 9
2.1 Autoregressive moving-average (ARMA) model . . . . . . . . . . 9
2.1.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 MA(∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 AR(∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Autoregressive (AR) model . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Moments of stable AR(p) process . . . . . . . . . . . . . . 11
2.3 Moving average (MA) model . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Moments of MA(q) process . . . . . . . . . . . . . . . . . 12
2.4 Extra notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12




1

,3 Estimation and Specification of ARMA Models 13
3.1 ARMA coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Maximum likelihood estimator (MLE) . . . . . . . . . . . . . . . 13
3.3 Multivariate normal likelihood of ARMA model . . . . . . . . . . 13
3.3.1 Variance-covariance matrix of AR(1) . . . . . . . . . . . . 14
3.4 Prediction error decomposition of ARMA likelihood . . . . . . . 14
3.4.1 Likelihood function of AR(1) . . . . . . . . . . . . . . . . 15
3.4.2 MLE of an AR(1) with NID(0, 1) innovations . . . . . . . 15
3.5 Least Squares Estimator (LSE) . . . . . . . . . . . . . . . . . . . 15
3.5.1 MLE and LSE properties . . . . . . . . . . . . . . . . . . 15
3.6 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Forecasting ARM A(p, q) processes . . . . . . . . . . . . . . . . . 16
3.7.1 Confidence interval for X̂T +h . . . . . . . . . . . . . . . . 17
3.7.2 Optimal forecast under quadratic loss . . . . . . . . . . . 17

4 Autoregressive distributed lag and error correction models 18
4.1 Various models of this course . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Box-Jenkins approach to modeling time series . . . . . . . 18
4.1.2 Structural models . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Statistical (reduced form) models . . . . . . . . . . . . . . 18
4.2 Autoregressive distributed lag model (ADL) . . . . . . . . . . . . 18
4.3 Long and short run multipliers . . . . . . . . . . . . . . . . . . . 19
4.4 Forecasting with ADL(1,1): triangular System . . . . . . . . . . 19
4.5 Impulse response function (IRF) . . . . . . . . . . . . . . . . . . 20
4.6 Error correction model (ECM) . . . . . . . . . . . . . . . . . . . 20

5 Spurious regression unit-roots 21
5.1 Spurious regression problem . . . . . . . . . . . . . . . . . . . . . 21
5.2 Dickey Fuller (DF) test . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1 Augmented Dickey-Fuller (ADF) - AR(p) . . . . . . . . . 22
5.2.2 ADF General-to-specific (G2S) . . . . . . . . . . . . . . . 22
5.3 Extra notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Cointegration and Granger causality 24
6.1 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.1 Cointegration tests . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Modeling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.1 Estimation based on ECM . . . . . . . . . . . . . . . . . . 26
6.2.2 Engle and Granger 2-step procedure . . . . . . . . . . . . 26
This document contains the contents of the lecture slides and notes. The expla-
nations are summarized. To understand the properties of the definitions, proofs,
and formulas, it is recommended to derive the formulas yourself.




2

, 0 Preparatory Notes
0.1 Mean
If X and Y are independent of each other.


E(XY ) = E(X)E(Y )

0.2 Law of Total Expectation
We can find the expected value of a variable X by considering all different
scenarios A under which X can occur.


E(X) = E(E(X | Y ))
= P (A1 )E(X | A1 ) + · · · + P (An )E(X | An )



0.3 Geometric series
P∞
A geometric series is a sum of the type i=0 ri = 1 + r + r2 + . . . .
• If r < 1, the series will converge to 1
1−r .

• If r = 1, the terms in the series will oscillate (positive-negative).
• If r > 1, the series will diverges (goes to infinity).

0.4 Notes
• The joint probability density function (joint pdf) is a function used to
characterize the probability distribution of a continuous random vector.
• The covariance is a measure of joint variability of two random variables.
It measures the directional relationship.




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper charhoog. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53068 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,99  4x  verkocht
  • (0)
In winkelwagen
Toegevoegd