100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
C959 Discrete Math I| 305 questions and answers. €13,36
In winkelwagen

Tentamen (uitwerkingen)

C959 Discrete Math I| 305 questions and answers.

 0 keer verkocht
  • Vak
  • Instelling

Form When an argument has been translated from English using symbols Invalid Describes an argument when the conclusion is false in a situation with all the hypotheses are are true Valid Describes an argument when the conclusion is true whenever the hypotheses are all true Co...

[Meer zien]

Voorbeeld 3 van de 24  pagina's

  • 13 oktober 2023
  • 24
  • 2023/2024
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Onbekend
avatar-seller
C959: Discrete Math I 305 questions and
answers
Form - answer When an argument has been translated from English using symbols



Invalid - answer Describes an argument when the conclusion is false in a situation with all the
hypotheses are are true



Valid - answer Describes an argument when the conclusion is true whenever the hypotheses are all true



Conclusion - answer The final proposition



Hypothesis - answer Each of the propositions within an argument



Argument - answer Sequence of propositions



Two Player Game - answer In reasoning whether a quantified statement is true or false, it is a useful way
to think of the statement in which universal and existential compete to set the statement's truth value.



Nested Quantifier - answer A logical expression with more than one quantifier that binds different
variables in the same predicate



Predicate - answer A logical statement whose truth value is a function of one or more variables



Domain of a variable - answer The set of all possible values for the variable



universal quantifier - answer ∀ "for all"



universally quantified statement - answer ∀x P(x)

,Counterexample - answer For a universally quantified statement, it is an element in the domain for
which the predicate is false.



existential quantifier - answer ∃ "there exists"



Existentially quantified statement - answer ∃x P(x)



Quantifier - answer Two types are universal and existential



Quantified Statement - answer Logical statement including universal or existential quantifier



Logical proof - answer A sequence of steps, each of which consists of a proposition and a justification for
an argument



Arbitrary element - answer Has no special properties other than those shared by all elements of the
domain



Particular element - answer May have properties that are not shared by all the elements of the domain



Theorem - answer Statement that can be proven true



Proof - answer Series of steps, each of which follows logically from assumptions, or from previously
proven statements, whose final step should result in the statement of the theorem being proven



Axiom - answer Statements assumed to be true



Generic object - answer We don't assume anything about it besides assumptions given in the statement
of the theorem

, Proof by exhaustion - answer If the domain is small, might be easiest to prove by checking each element
individually



Counterexample - answer An assignment of values to variables that shows that a universal statement is
false



Direct proof - answer The hypothesis p is assumed to be true and the conclusion c is proven to be a
direct result of the assumption; for proving a conditional statement



Rational number - answer A number that can be expressed as the ratio of two integers in which the
denominator is non-zero



Proof by contrapositve - answer Proves a conditional theorem of the form p->c by showing that the
contrapositive -c->-p is true



Even integer - answer 2k for some integer k



Odd integer - answer 2k+1 for some integer k



Irrational number - answer Real number that cannot be written as a fraction



Proof by contradiction - answer Starts by assuming that the theorem is false and then shows that some
logical inconsistency arises as a result of this assumption



Indirect proof - answer Another name for a proof by contradiction



Proof by cases - answer For a universal statement, it breaks the domain into different classes and gives a
different proof for each class. All of the domain must be covered.



Parity - answer Whether a number is odd or even

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper GUARANTEEDSUCCESS. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €13,36. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 71250 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis

Laatst bekeken door jou


€13,36
  • (0)
In winkelwagen
Toegevoegd