100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Molecular Genetics €6,79
In winkelwagen

Samenvatting

Summary Molecular Genetics

1 beoordeling
 1 keer verkocht

This is a summary of all the lectures of molecular genetics. It is edited with highlights and additional pictures that will help to understand everything better!

Voorbeeld 4 van de 60  pagina's

  • 24 oktober 2023
  • 60
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (4)

1  beoordeling

review-writer-avatar

Door: roosklaasen • 1 jaar geleden

avatar-seller
maud91
Molecular genetics

Lecture 1:
Metabolome → Set of all metabolites in an
organism:
- Genome → All genetic information of
an organism
- Trascuotome → Set of all RNA
transcripts from a genome
- Proteome → Set of all proteins
expressed by an organism

How does the genome replicate?

DNA replication is semiconservative

● Watson & Crick (1953)
○ Semiconservative replication
○ Each “parent” DNA strand produces a new “daughter” strand
● Topological problem
○ How to unwind the DNA
○ Semiconservative, conservative and dispersive replication mechanisms
● Matthey MEselson & Franklin Stahl (1958)
○ Meselson-Stahl experiment

The topological problem

The topology of DNA is defined by how the two DNA strands are intertwined. It plays an
important role in processes such as replication, recombination, transcription, ect.

Topoisomerase → enzymes that catalyze changes in the topological state of DNA by cutting
DNA strands. They relax positive and negative supercoils
- Type I Topoisomerase (singles-strand break)
- Type II topoisomerase (double-strand break)
- Gyrase type II → enzyme that introduces negative supercoils. It relaxes and
prevents overwinding during DNA replication

Initiation of DNA replication

Replication starts at the origin of replication (ori), where DNA strands are separated generating
a replication bubble that contains two replication forks, where replication occurs

, - Bacterial circular chromosomes contain a single ori
- Eukaryotic linear chromosomes have multiple ori. (e.g. human chromosome contain
30.000 and 50.000

A replicon is a unit of the genome that is replicated by a single origin of replication (e.g. one
replicon is bacteria, multiple in eukaryotes)

OriC of E. coli: Methylation regulates initiation
- OriC is 245 bp long and contain multiple recognition sites for
DNA binding proteins and enzymes
- Methylation of the OriC regulates initiation of replication
- OriC contains 11 copies of a palindromic sequence
(GATCCTAG). Dam methylase enzyme methylates the
adenines of the sequence
- When both DNA strand are methylated, oriC is active and
replication starts
- Hemimethylated origins (one strand methylated and other not)
inhibit initiation of replication, only fully methylated origins start
DNA replication (regulation system)
- When OriC is fully methylates, 6 proteins are involved in the formation of the replication
forks and the initiation of replication
1) DnaA is the initiator protein, and it is activated when it is bound to ATP.
DnaA-ATP binds in the fully methylated oriC. First in the high affinity sites then
the DNA wraps around DnaA and it binds to the low affinity sites that are AT rich,
It twists and melts the helix with the help of HU
2) Two DnaB/DnaC complexes, DnaB is an ATP hydrolysis dependent 5’-3’
helicase. It unwinds the DNA by breaking the hydrogen bonds between the
nucleotides. DnaC is a chaperone. They form the two replication forks
3) Gyrase (type II topoisomerase) relaxes DNA supercoils
4) SSB (single strand binding protein) stabilizes DNA, keeps the replication bubble
open, protects against degradation of ssDNA from DD-specific-nucleases

DNA polymerases
DNA-dependent DNA polymerase → multiple DNA polymerase activities in prokaryotes and
eukaryotes involved in different processes (DNA repair, replication, etc. But they all have these
common features:
1) DNA synthesis (5’ - 3’ direction)
2) DNA polymerases cannot initiate synthesis of DNA de novo, they need a primer with a
free 3’ - OH end
3) Proofreading error-control system. Exonuclease activity (3’ - 5’ direction)

DNA polymerase I contain both 3’ - 5’ and 5’- 3’ exonuclease activity. There are at least 14
different DNA polymerases in eukaryotes, but polymerase alpha, beta, gamma and delta have
major roles during replication and have been studies well

,Priming and semi-discontinuous replication

● DNA replication cannot synthesize DNA de novo: Primase is a DNA dependent RNA
polymerase that synthesizes RNA primers of ~ 10 nt long
- Eukaryotes: only one enzyme is required (DNA polymerase alpha has both
activities)
- Prokaryotes: Two different enzymes are required (primase and DNA polymerase
III)
● Leading strand is synthesized
continuously and the lagging strand
discontinuous. Therefore the DNA
replication is discontinuous
● Leading strand primes only once,
lagging strand very often synthesizes Okazaki fragments (1000 - 2000 nt in bacteria, ~
200 nt in eukaryotes) formed by RNA primer + elongated DNA (hybrid oligo)
● Finally RNA primers are degraded, gaps are filled with DNA by DNA polymerase and all
the fragments are ligated together by a ligase enzyme

Joining of adjacent Okazaki fragments in E. coli
- DNA polymerase III has only 3’ -5’ exonuclease
activity. It stops synthesizing DNA when it finds a
primer
- DNA polymerase I has both 3’ - 5’ and 5’ - 3’
exonuclease activities. It degrades the primer with the
5’ - 3’ exonuclease activity and synthesizes new
complementary DNA simultaneously
- DNA ligase ligates the adjacent fragments generating
the lagging strand

Joining of Okazaki adjacent fragments in eukaryotes
Two-step process
- DNA polymerase delta and helicase displace the
primer, creating a 5’ flap. Simultaneously the DNA polymerase fills the gap
- Flap endonuclease I (FEN1) cleaves the flap, removing the primer
- DNA ligase ligates the adjacent fragments

Elongation of DNA replication

Progress at the replication fork: the replisome
- In E. coli the progression of the replication fork is maintained by these enzymes:
Helicase, Gyrase, SSB, Primase, DNA polymerase I and III, Ligase
- Eukaryotes are complex organisms, many other proteins are involved during elongation
but the process is similar

, How does the lagging strand keep the same synthesis rate in both strands?
→ The replisome (a complex of two DNA polymerases + associated proteins) keep both DNA
polymerase linked and assures a parallel synthesis of the leading and lagging strands
→ Loop structures of the lagging strand allows DNA synthesis in the same direction of the
replication fork

The replisome: structure
● The replisome is a multi proteins structure that
assembles at the replication fork to undertake synthesis
of DNA. It contains:
○ 2x DNA polymerase (for lagging and leading
strand)
○ 2x dimerizing subunit T that link DNA
polymerases together
○ 2x sliding clamps form beta-rings that encircles the DNA and ensure contact
between DNA and DNA polymerase
○ Clamp loader (group of 5 proteins) places the clamp on DNA, keeping all the
structure together
● DNA polymerases have different abilities. Each polymerase synthesizes one DNA
strand. DNA polymerase in leading strand remains associated to the DNA template,
DNA polymerase in lagging strand must repetitively associate / dissociate from DNA

The replisome: movement

https://www.youtube.com/watch?v=IjVLhoyfGAM


Termination of DNA replication

Termination of replication in E. coli
- DNA replication is bidirectional and start at OriC
- Replication forks meet and halt in a region halfway from the origin → the replication fork
trap
- At both sites of termination region there are five Ter sites (23 bp) that are recognized by
Tus (terminator utilization substance) proteins
- Tus proteins bind to DNA in a specific orientation and stops the replication fork
→ Eukaryotic termination is more complex (larger linear chromosomes, multiple replicons)
The end problem

Linear chromosomes could become shorter after replication because one of these reasons
a) Final Okazaki fragment cannot be primed (primase doesn’t have space to add a primer)
b) The primer of the last Okazaki fragment is at the very last 3’ extreme. It cannot be
removed and synthesized by DNA polymerase

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper maud91. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,79. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 62774 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,79  1x  verkocht
  • (1)
In winkelwagen
Toegevoegd