Opgave 1 (a) (2 punten voor een leuk plaatje)
(1) 2
(3)
(b) 1 punt voor het juiste antwoord, 1 punt voor de vertaling in het Nederlands, 1 punt voor de
toelichting.
(i) De formule zegt dat R reflexief is (vanuit elk punt is er een lus terug naar dat punt). Deze
uitspraak is onwaar, omdat h2, 2i 6∈ R (en dus is er vanuit 2 geen lus terug naar 2).
(ii) De formule zegt dat er een pijl te vinden is tussen twee verschillende punten die beide
omcirkeld zijn (de eigenschap A hebben). Dit is waar, want 1 and 3 zijn omcirkeld (hebben
de eigenschap A) en er is een pijl van 1 naar 3 (h1, 3i ∈ R).
(iii) De formule zegt dat vanuit ieder punt van waaruit er een pijl vertrekt naar een ander punt
omcirkeld is (de eigenschap A heeft). Dit is onwaar, want 2 is niet omcirkeld (heeft niet de
eigenschap A) en er is een pijl van 2 naar 3.
(iv) De formule zegt dat er een uniek punt is dat vanuit alle punten bereikbaar is. Deze uitspraak
is waar, want 3 is vanuit elk ander punt bereikbaar (h1, 3i, h2, 3i, h3, 3i ∈ R), maar de punten
1 en 2 zijn dat niet (bv. h2, 1i 6∈ R and 1, 2i 6∈ R).
Opgave 2 3 punten per antwoord. Meerdere antwoorden mogelijk!
(a) S(z, p).
(b) ∀x B(x) → ∃y S(x, y) .
(c) ∀x x = z ↔ S(x, p) .
(d) ∀x B(x) ∧ ¬x = z → ∃u ∃v (S(x, u) ∧ S(x, v) ∧ ¬u = v) . Als je van mening bent dat de zin
impliceert dat de zangeres niet meer dan één instrument speelt (verdedigbaar, denk ik), dan
moet de vertaling iets zijn als: ∀x B(x) → (¬x = z) ↔ ∃u ∃v ( S(x, u) ∧ S(x, v) ∧ ¬u = v ) .
Opgave 3 4 punten per goed antwoord. Meerdere goede antwoorden mogelijk!
(i) Model A: ¬β ∧ ¬γ (zie onder)
(ii) Model B: β := ∀x ¬R(x, x)
(iii) Model C: γ := ¬∃x ∃y ( R(x, y) ∧ ¬x = y )
Opgave 4 6 punten per onderdeel (4 punten voor het model, 2 voor de toelichting). Meerdere goede
antwoorden mogelijk!
(a) D = {1, 2}, met I(P ) = ∅, I(Q) = {1} and I(c) = 2. In dit model is ∃x (P (x) ∨ Q(x)) waar,
omdat er een element is met de eigenschap Q (namelijk 1); verder is ook ∀x ¬P (x) waar, omdat
geen enkel element de eigenschap P heeft (I(P ) = ∅). Maar Q(c) is niet waar, want het element
dat c interpreteert (namelijk 2) heeft niet de eigenschap Q (2 6∈ I(Q)).
(b) D = {1, 2} met I(R) = {h1, 1i, h2, 2i} en I(f ) = {h1, 2i, h2, 1i (omgekeerd kan ook). In dit model
is ∀x ∃y R(x, y) waar, omdat elk element gerelateerd is aan iets (namelijk zichzelf). Daarnaast
is geen enkel element x gerelateerd aan f (x) (omdat h1, 2i 6∈ R en h2, 1i 6∈ R).
1
, Opgave 5 Natuurlijke deductie: 7 punten per onderdeel.
(a)
1. ∀x (P (x) → Q(x) ) ass
2. ∀x ( Q(x) → R(x) ) ass
3. u ass
4. P (u) ass
5. P (u) → Q(u) G∀, 1
6. Q(u) G→, 4, 5
7. Q(u) → R(u) G∀, 2
8. R(u) G→, 6, 7
9. P (u) → R(u) I→, 4––8
10. ∀x ( P (x) → R(x) ) I∀, 3––9
(b)
1. ∃x ( P (x) → ∀y Q(y) ) ass
2. u P (u) → ∀y Q(y) ass
3. v ass
4. P (u) ass
5. ∀y Q(y) G→, 2, 4
6. Q(v) G∀, 5
7. P (u) → Q(v) I→, 4––6
8. ∀y ( P (u) → Q(y) ) I∀, 3––7
9. ∃x ∀y ( P (x) → Q(y) ) I∃, 8
10. ∃x ∀y ( P (x) → Q(y) ) G∃, 1, 2––9
2