100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary RMC including how to do it in R €6,49
In winkelwagen

Samenvatting

Summary RMC including how to do it in R

 13 keer bekeken  0 keer verkocht

Master Research Methods based on the course in 2023. My summary covers lectures, literature, and R instructions

Voorbeeld 4 van de 78  pagina's

  • 29 oktober 2023
  • 78
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
maraoltmans1
Inhoudsopgave

Midterm week 1 ............................................................................................................................................... 5

Chapter 2: The Simple Regression Model ........................................................................................................... 5
2.1 Scatterplots and conditional distributions ..................................................................................................... 5
2.1.1. Scatterplots .......................................................................................................................................... 5
2.1.2. A line through conditional means ........................................................................................................ 5
2.1.3 Errors of Estimate ................................................................................................................................. 5
2.2 The Simple regression model ........................................................................................................................ 5
2.2.1. The Regression Line ............................................................................................................................. 5
2.2.2. Variance, Covariance, and correlation ................................................................................................. 5
2.2.3 Finding the Regression Line .................................................................................................................. 6
2.2.4. Example computations......................................................................................................................... 6
2.2.5. Linear regression analysis by computer ............................................................................................... 6
2.3 The regression coefficient versus the correlation coefficient ......................................................................... 6
2.3.1. Properties of the Regression and Correlation Coefficients .................................................................. 6
2.3.2. Uses of the regression and correlation coefficients ............................................................................. 7
2.4 Residuals ....................................................................................................................................................... 7
2.4.1 The three components of Y ................................................................................................................... 7
2.4.2. Algebraic properties of residuals.......................................................................................................... 7
2.4.3. Residuals as Y adjusted for differences in X ......................................................................................... 7
2.4.4. Residual analysis .................................................................................................................................. 7

Chapter 3: Partial Relationship and the Multiple Regression Model .................................................................... 8
3.1. Regression analysis with more than one predictor variable ......................................................................... 8
3.1.1. An Example .......................................................................................................................................... 8
3.1.2. Regressors ............................................................................................................................................ 8
3.1.3. Models ................................................................................................................................................. 8
3.1.4. Representing a model geometrically .................................................................................................... 8
3.1.5. Model errors ........................................................................................................................................ 8
3.1.6. An alternative view of the model ......................................................................................................... 8
3.2. The Best-Fitting Model ................................................................................................................................. 8
3.2.1. Model estimation with Computer Software ......................................................................................... 8
3.2.2. Partial regression coefficients .............................................................................................................. 8
3.2.3. The regression constant ....................................................................................................................... 8
3.2.4. Problems with three or more regressors ............................................................................................. 8
3.2.5. The multiple correlation R .................................................................................................................... 8
3.3.3. The standardized regression coefficient .............................................................................................. 8
4.2 The ANOVA summary table........................................................................................................................... 8
4.2.1. Data = model + error ............................................................................................................................ 8
4.2.2. Total and regression sums of squares .................................................................................................. 8
4.2.3. Degrees of Freedom .................................................................................................................................. 9
4.2.4. Mean squares ......................................................................................................................................... 10
4.3 Inference about the multiple correlation..................................................................................................... 11
4.3.1 Biased and less biased estimation of Rsquared................................................................................... 11
4.2.3 Testing a hypothesis about tR ............................................................................................................. 11

Installing & loading packages ......................................................................................................................... 13

,How to… ......................................................................................................................................................... 13
Adding a Column to Your Datafile: .................................................................................................................... 13
Manually Calculating the Mean: ....................................................................................................................... 13
Manually Calculating the Predicted Mean: ....................................................................................................... 13
Manually Calculating the Residual: ................................................................................................................... 13
Manually Calculating the Mean Residual: ......................................................................................................... 13
Manually Calculating the Squared Residuals: ................................................................................................... 13
Manually Calculating the Mean Squared Residual: ........................................................................................... 13
Manually Calculating SSE (Sum of Squared Residuals): ..................................................................................... 13
Manually Calculating TSS (Total Sum of Squares): ............................................................................................ 14
Manually Calculating RSS (Regression Sum of Squares): ................................................................................... 14
Manually Calculating R-squared (R2): ............................................................................................................... 14
Manually calculating the F-statistic .................................................................................................................. 14

Midterm week 2 ............................................................................................................................................. 16

Installing & loading packages ......................................................................................................................... 16

How to… ......................................................................................................................................................... 16
Assumptions ..................................................................................................................................................... 16

Chapter 4: ...................................................................................................................................................... 18
4.1.2. Assumptions for Proper Inference ..................................................................................................... 18
4.4. The Distribution of and Inference about a partial regression coefficient .................................................. 18
4.4.1 Testing a Null hypothesis about Tb ..................................................................................................... 18
4.4.2 Interval Estimates for Tb ..................................................................................................................... 18
4.4.3 Factors Affecting the Standard Error of b ........................................................................................... 19
4.4.4 Tolerance ............................................................................................................................................ 19
4.7 Miscellaneous Issues in Inference ............................................................................................................... 21
4.7.1 How Great a Drawback is Collinearity? ............................................................................................... 21
4.7.2 Contradicting Inferences ..................................................................................................................... 21
4.7.3 Sample Size and Nonsignificant Covariates ........................................................................................ 21
4.7.4 Inference in Simple Regression (when k=1) ........................................................................................ 22

Chapter 5: Extending Regression Analysis Principles ...................................................................................... 22
5.1 Dichotomous regressors ............................................................................................................................. 22
5.1.1 Indicator or dummy variables ............................................................................................................. 22
5.1.2 Estimates of Y are Group Means......................................................................................................... 22
5.1.3. The regression coefficitien for an indicator is a Difference ................................................................ 22
5.1.4 A graphic representation .................................................................................................................... 22
5.1.5 A Caution About Standardized Regression Coefficients For Dichotomous Regressors ....................... 22
5.1.6 Artificial categorization of numerical variables................................................................................... 23

Chapter 7: ...................................................................................................................................................... 23
7.3 Selection Predictor Variables ...................................................................................................................... 23
7.3.1. Stepwise regression ........................................................................................................................... 23
7.3.2. All subsets regression ........................................................................................................................ 24
7.3.3 How Do Variable Selection Methods Perform? .................................................................................. 24

,Chapter 8: Assessing The Importance Of Regressors....................................................................................... 24
8.1 What Does It Mean For A Variable To Be Important? ................................................................................. 24
8.1.1. Variable Importance in Substantive or Applied Terms ....................................................................... 24
8.1.2. Variable Importance in Statistical Terms ............................................................................................ 24
8.3 Determining the Relative Importance of Regressors in a Single Regression Model .................................... 25
8.3.1 The Limitations of the Standardized Regression Coefficient .............................................................. 25
8.3.2 The Advantage of the Semipartial Correlation ................................................................................... 25
8.3.3. Some Equivalences among measures ................................................................................................ 25
8.3.4. Eta-Squared, Partial Eta-Squared, and Cohen’s f-Squared ................................................................. 26
8.3.5. Comparing Two Regression Coefficients in the Same Model ............................................................ 27

Chapter 9: Multicategorical Regressors .......................................................................................................... 28
9.1. Multicategorical variables as sets ............................................................................................................. 28
9.1.1. Indicator coding ................................................................................................................................. 28
9.1.2. Constructing Indicator Variables ........................................................................................................ 28
9.1.3. The Reference Category ..................................................................................................................... 28
9.1.4. Testing the equality of several means................................................................................................ 29
9.1.5. Parallels with Analysis of Variance ..................................................................................................... 29
9.1.6. Interpreting Estimated Y and the Regression Coefficients ................................................................. 29
9.2 Multicategorical regressors as or with covariates ...................................................................................... 29
9.2.1 Multicategorical Variables as Covariates ............................................................................................ 29
9.2.2 Comparing Groups and Statistical Control .......................................................................................... 29
9.2.3 Interpretation of regression coefficients ............................................................................................ 30
9.2.4. Adjusted Means ................................................................................................................................. 30
9.2.5. Parallels with ANCOVA ....................................................................................................................... 30
9.2.6. More Than One Covariate.................................................................................................................. 30

Chapter 16: Detecting and Managing Irregularities ........................................................................................ 30
16.1 Regression diagnostics ............................................................................................................................. 30
16.1.1. Shortcomings of eyeballing the Data ............................................................................................... 30
16.1.2. Types of Extreme Cases ................................................................................................................... 30
16.1.3 Quantifying leverage, distance, and influence .................................................................................. 30

Midterm week 3 ............................................................................................................................................. 32

Theorie ........................................................................................................................................................... 32
Difference correlation and causation ............................................................................................................... 32
Spurious effect .................................................................................................................................................. 32
Theory – Mediation .......................................................................................................................................... 32
Difference spurious effect & mediation effect .................................................................................................. 33
Different types of methods to test mediation ................................................................................................... 34
Baron & Kenny ............................................................................................................................................. 34
How to calculate mediation: ........................................................................................................................ 34
Sobeltest ...................................................................................................................................................... 35
Bootstrap ..................................................................................................................................................... 35
Bootstrapping and Confidence Intervals for Effect Sizes: ............................................................................ 36
Different Effect Size Metrics:........................................................................................................................ 36
Relative Effect Sizes:..................................................................................................................................... 37
Stability and Sample Size: ............................................................................................................................ 37
𝑅² (Proportion of Variance Explained by Indirect Effect): ............................................................................ 37
Evaluation of methods ...................................................................................................................................... 38

, Midterm week 4 ............................................................................................................................................. 39

Theory ............................................................................................................................................................ 39
Moderation:...................................................................................................................................................... 39
Significance Testing: ......................................................................................................................................... 39
Modeling with Interaction: ............................................................................................................................... 40

Moderation with the PROCESS function ......................................................................................................... 40
Moderation with the PROCESS function - Interpretation .................................................................................. 40

Moderation through hierarchical regression analysis ..................................................................................... 41

Visualization ................................................................................................................................................... 41
Plotting Regression Coefficients: ...................................................................................................................... 41
Plotting Conditional Effects:.............................................................................................................................. 41
Using Johnson-Neyman Plot: ............................................................................................................................ 42

The four primary levels of measurement........................................................................................................ 43

Open question example answer ..................................................................................................................... 44

Midterm week 5 ............................................................................................................................................. 45
Analysis of Variance (ANOVA)........................................................................................................................... 45
Assumptions ..................................................................................................................................................... 46
Contrasts .......................................................................................................................................................... 47
Choosing Contrasts in ANOVA ..................................................................................................................... 47
Additional Testing Approaches .................................................................................................................... 47
Splitting the Variance ................................................................................................................................... 48
Non-Orthogonal Contrasts........................................................................................................................... 48
Post-Hoc Tests and Corrections ................................................................................................................... 48
Variance ............................................................................................................................................................ 49
Mean squares & F-test ..................................................................................................................................... 51
Effect sizes ........................................................................................................................................................ 52
Marginal vs. Estimated marginal means .......................................................................................................... 52

Midterm week 6 ............................................................................................................................................. 53

16.2 When to use MANOVA ........................................................................................................................... 53

Slides:............................................................................................................................................................. 60

Plot uitleg ....................................................................................................................................................... 66

Tutorial........................................................................................................................................................... 69

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper maraoltmans1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 57413 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49
  • (0)
In winkelwagen
Toegevoegd