100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Exam Preparation Research Design and Data Analysis in Communication €6,49
In winkelwagen

College aantekeningen

Exam Preparation Research Design and Data Analysis in Communication

 9 keer bekeken  1 keer verkocht

With this document I prepared for the exam "Research Design and Data Analysis in Communication" of the Master's Communication and Information Science - Global Communication & Diversity at the Radboud University. The preparation document includes all necessary information for the exam - as discussed...

[Meer zien]

Voorbeeld 3 van de 27  pagina's

  • 1 november 2023
  • 27
  • 2023/2024
  • College aantekeningen
  • Dr laura speed
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
ninavanloosen
Lecture 2: Repeated-measures ANOVA (Analysis of variance – within subject)
- Design where subjects are submitted to repeated measurements
o Subjects are tested more than once, e.g., at t1, t2, and t3
OR
o Subjects are submitted to more than one treatment at once, for example
multiple experimental conditions
- Benefits
o Allows for reduction of variation between subjects and zooms in on the effect
of the treatment within subjects (i.e., within subject variation)
▪ Every participant brings their own noise
o Need fewer participants to test an effect (because you eliminate between-
subject variation)
→ gives you more statistical power

Between vs within subject design
- Between: the larger the variation within groups, the smaller the chance of a
difference between groups
- Within: variation within a group is unimportant: only variation within subjects is
important
o Only look at how participants vary between each condition

Disadvantages
- Carry-over effect
o Treatment at t1 has an effect on t2, e.g., pill given at t1 has not worn off
o Solution: enlarge interval between t1 & t2
- Test- or learning-effect
o Test results are influenced (positively/negatively) by testing itself and not by
treatment
▪ Participants get better at doing tests over time / getting sick of doing
same test over and over → get worse
o Solution:
▪ Randomize the tests (counterbalancing); randomize order of stimuli
▪ Add a control group

Methodological issues
- History: External occurrence between t1 and t2
- Maturation: people change over time
- Solution to both: control group
- Participants become aware of the manipulation
o May respond in ways that are less natural/how they think you want them to
answer
o Solution: add filler stimuli to distract them & hide manipulation from
participants

Repeated-measures: Basic Idea
- Compares 2 types of variation to test the equality of means → are the means in
different conditions equal?
- Comparison is based on ratio of variations

1

, - If the treatment variation is significantly larger than the random variation, then at
least one mean deviates from another mean
- Measures of variance are obtained by breaking down the total variance
o Only interested in variation within participants
1) Variation due to treatment: SSM
2) Random variation (random noise, e.g., distraction, tiredness): SSR

Assumptions
1) Normality
o Dependent variable(s) is/are normally distributed
o ANOVA is robust to violations
2) Homogeneity of variances (sphericity)
o Whether variance of difference between conditions is equal/ DVs have equal
variance in each condition
o ANOVA is robust to violations if n’s are equal
3) Residuals are random & independent
o Individual difference should not interact with treatment error
o Treatment effect is independent of individual differences

What if assumptions are violated?
- Most important assumption is equality of variances (sphericity); there are three tests
1) Mauchly’s test of sphericity (within variance, more than 2 levels)
o Variance of different conditions is equal
o If you only have two factors, ignore this
o Based on this test, one can conclude whether a within-subject test is
allowed (sphericity assumed)
o If violated (i.e., test is significant)→ alternative F-ratios need to be used
▪ P-values by Huyhn-Feldt, if epsilon >.75
▪ P-values by Greenhouse-Geisser, if epsilon is <.75
▪ Use multivariate tests, if sphericity is not relevant (when more than 1
DV)
2) Box’s M test (when there is more than 1 dependent variable) → not relevant for
us (only relevant when mixed design with more than one DV)
o Tests whether DVs are related to each other & different groups → want the
DV to be related in the same way in different groups
o Disadvantages → test is sensitive to violations of normality & sample size
(only nec. when 2 or more DVs)
o Ignore results of this if n is equal across groups
3) Levene’s test of equality of error variance (when there is a between subject
variable → mixed design)
o Tests equal variances across groups/error between groups should be equal
o If significant → cannot assume that variation is due to experimental design
but could be due to too much variance between groups in general → use
Dunnett’s T3, otherwise e.g., Tukey (or okay if n is qual across groups)
▪ Need to report whether it was sign. and which test you used instead
➔ mixed design: Mauchly’s and Levene’s test
➔ within design: only Mauchly’s test


2

, Output interpretation example 1 – one within subject factor
- Variable view: one column per condition, e.g., four lists that people read → four
columns

→ gives idea of what might be found in the data




▪ significant → assumption
of sphericity not met
▪ Check Epsilon value < .75
→ use F-ratio by
Greenhouse-Geisser


▪ G-G reporting: (F(1.55,
13.94) = 69.31, p < .001,
np2 = .855) → don’t forget
effect size
▪ Alternative F-ratio does
not influence what is
found
▪ This table is more
important than the
Multivariate Test table
because there is only on
DV

- Conclusion: at least one list has deviant mean percentage compared to other means
▪ table shows whether DV
can be described with
linear, quadratic, or cubic
function
▪ In this case: both linear &
cubic can describe data

▪ Only important if repeated measures are
actually repeated measured in time, or there is
an equal difference between levels



▪ shows variation in data
between participants
▪ Conclusion: participants
differ a lot → large
individual variation (error)

3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ninavanloosen. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53340 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd