100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary of empirical methods in finance part 1 €3,99
In winkelwagen

Samenvatting

Summary of empirical methods in finance part 1

 114 keer bekeken  2 keer verkocht

Empirical methods in finance part 1 on cross-sectional data given by pavaninin in 17/18.

Laatste update van het document: 6 jaar geleden

Voorbeeld 2 van de 7  pagina's

  • 29 december 2017
  • 11 januari 2018
  • 7
  • 2017/2018
  • Samenvatting
Alle documenten voor dit vak (10)
avatar-seller
maikelvogelaar
Basics
Random variables;
• Bernoulli: Binary based on a 0/1 outcome  Male or female
• Discrete: finite variable based on a multiple number outcome  Dice
• Continuous variable: infinite value  Stock price

Probability distribution function (PDF) is based on the probability of
an outcome in a zero to one value. Given by the joint PDF of (x,y)
where both are independent. P(X=x,Y=y). Beneath the function the
area is stated as the probability.
The Cumulative distribution function (CDF) simply is the same but in a
cumulative manner, showing a progressing line instead of a parabolic.

The normal distribution itself is denoted as X~N(μ,σ2) Where within brackets it shows (mean,
variance). It a s possibility to standardize the scores to make comparison more reliable (comparing a
𝑋−𝜇
grade of B to a grade of a 9) which then is denoted as ‘z’.  𝑧 = 𝜎 ~N(0,1)
Central tendency:
• E(x)=… which means the expected value/ mean of the random variable
Dispersion:
• Var(x)= σ2x, where the variance measures the distance from the mean
• SD(x)= σx
Association:
• Cov(x,y) = σxy , which will be zero if both x and y are independent of each other.
• Corr(x,y)= ρxy , which will be zero if x and y do not have a relationship to one another.

Hypothesis testing can be done using the Chi-square ( 𝑋 = ∑𝑛𝑖=1 𝑍𝑖2 ), T-test and F-test

Matrix: Vector is a row of numbers, a scalar a single number. The matrix itself is a block of numbers.
Example:
3 7
3 −2 0
A = −2 5 =
7 5 1
0 1
Example inverse:
𝐴 𝐵 1 𝐷 −𝐵
 𝐴𝐷−𝐵𝐶 ∗ ( )
𝐶 𝐷 −𝐶 𝐴

Bivariate CLM (Cross-sectional data)
𝑦𝑖 = 𝛼 + 𝛽𝑖 𝑋𝑖 + 𝑢𝑖 where this represents the main population determinant.
As such that CEO salary (y) is determined by the intercept (α), the estimation on ROE (β) and any
other determining factor (u).
Y=dependent, α=constant, β=estimator, X=independent and U=error.

This regression can then be estimated using Ordinary least squares (OLS) which calculates the
vertical distance between the fitted line and a point (𝑢̂𝑖). This distance then gets squared and the
estimation coefficient captured as ‘beta’ is the estimate that minimizes the squared residuals.

Linear: CEO salary=963.19+18.50(ROE)+Ui
which is a level-level interpretation. The constant shows that if the Return on equity equals zero, the
CEO salary will be $963,190 (Salary is in thousands). A one percentage point increase in ROE will
cause an $18,500 increase in salary.

, Quadratic: CEO salary=1003.79+2.035ROE+0.278ROE2
Which is a level-level interpretation. The change in the CEO salary value is dependent on the initial
value of ROE. The eventual determinant of Y will be 2.035+0.56ROE, which is a one-unit point
increase. Meaning that a positive X2 shows an increasing rate and a negative X shows a decreasing
rate.

Logarithm: Log (CEO salary) = 6.71+0.014ROE
Which is a Log-level interpretation. The change in y is thus measured in percentages compared to x.
a one-unit increase in ROE (percentage point) will cause a 100*β% increase in y. Thus, the semi-
elasticity of y to x will be 0.014*100=1.4%. Therefore, a one percentage point increase in ROE results
in a 1.4% increase in CEO salary.

Log (CEO salary) = 6.49+0.17 log (ROE)
Which is a log-log interpretation knowing the parameter of log will be bigger and hence ‘easier’ to
read and interpret. A one percent increase in ROE causes a 0.17% increase in salary. Which is the
elasticity of Y with respect to X.

Level-level y x ∆y=β∆x
Level-log y Log (x) ∆y=(β/100) %∆x Semi-elastic
Log-level Log (y) x %∆y=100*β∆x Semi-elastic
Log-log Log (y) Log (x) %∆y=β%∆x Elastic

OLS assumptions
1. The model is linear in parameters
Yi=α+βxi+ui
2. Random sample from the population
OLS cannot be trusted if we only take a particular sample out of the population. For example,
only the highest CEO-sample. Then, on average, the found relation is not the true one.
3. Sample variation in the explanatory variable (x)
If x (ROE) varies in the population, it should as well in the sample.
4. Error term must have an expected value of zero given any x
E(U|X)=0, meaning that the unobserved factors in u is fixed for any x and has no relationship.

If Assumptions 1 to 4 hold we can speak of unbiasedness. Meaning that the estimate of beta
(𝐸(𝛽̂ ) = 𝛽. Whenever there is a bias, a term should be added to this formula which then not equals
𝑛
∑ (𝑋𝑖−𝑥̅ )∗𝐸(𝑈𝑖)
zero. 𝐸(𝛽̂ ) = 𝛽 ∗ ( 𝑖=1
∑𝑛 (𝑋𝑖−𝑥̅ )2
). Yet, a fifth assumption is needed.
𝑖=1
5. Homoscedasticity
The variance of error u is constant and finite for every value of x. Given as Var (U|X)=σ2 < inf.
̂
𝜎
Which is then given as; 𝑆𝑒(𝛽̂ ) =
√∑𝑛
𝑖=1(𝑋𝑖−𝑥̅ )
2




The measurement of how much the variables explain on y is named goodness of fit (R-squared). It is
calculated by (ESS/TSS)=1-(RSS/TSS) where ESS=explained model, TSS=total model and RSS=residual.

Hypothesis testing: known as testing for statistical significance needs the main assumption that the
beta is normally distributed. Which is then assumption 6;
6. Normal distribution of the estimating beta.
The population error (u) is independent of x and normally distributed μ~N(0,σ2)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper maikelvogelaar. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53340 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd