100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary table Methodology for Marketing and Strategy Research €3,99
In winkelwagen

Samenvatting

Summary table Methodology for Marketing and Strategy Research

 158 keer bekeken  8 keer verkocht

Summary table with all the methods: factor analysis, AN(C)OVA, MANOVA, Multiple regression analysis, SEM (PLS). All the useful threshold values are in there to assess SPSS output.

Voorbeeld 2 van de 5  pagina's

  • 28 januari 2018
  • 5
  • 2017/2018
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
jbok
Analysis
process
Factor Problem Objectives: data summarization / data reduction
analysis formulation Variables: ratio/interval, sample size 4-5 N per variable
Exploratory factor analysis Confirmatory factor analysis
Find an underlying structure A priori ideas of underlying structure
Assumptions that factors cause correlations Relationships between variables and factors
between variables. Errors uncorrelated before conducting the analysis. Errors could
correlate
Analyze correlation matrix Analyze variance-covariance matrix
Purpose: generation of hypothesis Purpose: testing of hypothesis
Constructing Useful matrix based on:
correlation - KMO measure of sampling adequacy. Does the sample represent the population? KMO
matrix above .50
- Bartlett’s test of sphericity: test H0 that variables are uncorrelated in the population.
Rejection is needed because you want correlation. Sig <0.05
Selecting Principal components analysis Common factor analysis
extraction Total variance (1,000) Common variance
method Unities Communalities
Primary concern: minimum number of Primary concern: identify the underlying
factors that will account for maximum dimensions and their common variance
variance (data reduction). Factors are (data summarization). Known as principal
principal components axis factoring.
Extraction result: factor matrix. Factor loading: correlation between variable and factor.
Minimum: around 0.5. Significant: above 0.5. Desirable: above 0.7.
Determining - A priori determination
number of - Eigenvalues > 1 (also called latent root criterion)
factors - Scree plot
- Percentage of variance (in total >0.60)
Rotating Each factor should have significant loadings for only some variables, each variable with only a
factors few, most ideal only 1. Rotation for interpretation reasons
Orthogonal rotation (Varimax) Oblique rotation (Oblimin)
Axes maintained at right angles Axes NOT maintained at right angles
Assumes factors are not correlated Assumes factors are correlated
Given objective of data reduction or Meaningfulness of corelated constructs for a
subsequent use in other analysis contexts specific context of the study
Use rotated factor matrix Use pattern matrix
If a correlation >.30, use oblique (see factor correlation matrix). However, theory is most
important!
Interpreting Factor can be interpreted in terms of the variables that load high on it
factors
Using factors - Reliability: Cronbach’s alpha: above 0.7
in other Validity:
analyses - Factor scores: composite measure created for each observation on each factor extracted in
the factor analysis
- Surrogate variables: selection of a single variable with the highest factor loading to
represent a factor in the data reduction stage
- Summated scores: method of combining several variables that measure the same concept
into a single variable to increase reliability of the measurement.
Which reduction method to select?

, Need for simplicity  surrogate variables
Replication in other studies  summated scales
esire for orthogonality of the measures  factor scores
Determining Residuals: comparing differences between observed correlations (as given in input correlation
model fit matrix) and reproduced correlations (as estimated from the factor matrix).
SPSS Cross loading: variable who has two or more factor loadings exceeding the threshold value
Orthogonal rotation  rotated factor matrix
Oblique rotation  pattern matrix
Remove variables when:
- Factor loadings: <.30
- Cross loader: if highest correlation and second highest correlation <│.20│
- Communalities after extraction >.20 (see table communalities)
AN(C)OVA Identify Independent variable: at least one is categorical (different categories), levels are independent
independent (except repeated-measure ANOVA) so called factors.
Categorical and Dependent variable: must be metrically scaled, like Likert scale.
IV + Metric dependent ANCOVA: independent variables contain both categorical (still factors) and metric variables.
DV variables Covariates are the metric independent variables, to include statistical control variables.
Decompose F= between groups/ within groups (the larger, the more different means)
ANOCAVA the total
+ Metric IV variation
Measure the Assumptions:
effects - Normality (no problem if N of each group >30)
- Independence of errors
Test the - Independent scores
significance - Sample size
- Homogeneity of variance
Interpret the Effect size: >0.01 small >0.06 medium >0.14 high
results Test of main effect hypotheses:
SPSS - H0: the group averages of the diverse groups are equal
- H1: the group averages of the diverse groups are unequal (desirable)
Test of interaction effect
- H0: no interaction effect occurs
- H1: an interaction effect occurs
Interaction effect ordinal/disordinal:
- No interaction: lines are parallel
- Ordinal: Lines don’t cross, direction of change is always the same
- Disordinal with non-crossover: direction of change differs, order is the same
- Disordinal with crossover: the order is even different
Homogeneity of variance  Levene’s test.
- H0= equal variances, so homogeneity (desired, so non significance)
- H1= unequal variances, so heterogeneity.  when group have equal sizes, it’s not harmful.
In case of unequal sizes, use Welch statistic.
Post hoc analysis:
- Games Howell: in case of heterogeneity
- Hochberg: in case of homogeneity and unequal group sizes
- Tukey: in case of homogeneity and equal group sizes
Group sizes equal or unequal  biggest N / smallest N
- Outcome <1.5 than equal group sizes
- Outcome >1.5 than unequal group sizes

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jbok. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53340 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99  8x  verkocht
  • (0)
In winkelwagen
Toegevoegd