MATH 215 - Midterm Cheat sheet Athabasca University Question 1: Observations from the first 25 days of the year showed that the following number of class boundary midpoint frequency cum freq relative frequency pedestrians used a particular cross walk on each day: 15-34 14.5 -34.5 15+34/2=24.5 4 4 4/25=.16 19 132 25 78 62 101 84 32 99 71 43 56 64 81 59 67 43 97 105 91 31 66 76 87 125 35-54 34.5 -54.5 35+54/2=44.5 2 6 2/25=.08 a. construct a frequency distribution using lower limit of 15 and class width of 20 — indicate class 55-74 54.5 -74.5 55+74/2=64.5 7 13 7/25=.28 limits, boundaries, midpoints, frequencies and cumulative frequencies 75-94 74.5 -94.5 75+94/2=84.5 6 19 6/25=.24 b. create relative frequency polygon 95-114 94.5 -114.5 95+114/2=104.5 4 23 4/25=.16 c. create a percentage ogive — cumulative relative frequency 115-134 114.5 -134.5 115+134/2=124.5 2 25 2/25=.08 d. calculate approx. value of 30th percentile and what does it mean: k = percentile + n = sample size organize data from least to greatest — k x n / 100 = P30 — 30 x = 750/100 = 7.5 (round up = 8) find the 8th data — 30 percentile = 30% of the data is below that percentile 3. An average glass of milk contains 115 grams of calcium with a standard deviation of 8 grams. Using Chebyshev’s theorem, construct an interval that contains the calcium content of at least 50% of the glasses of milk. mean = 115 — standard deviation = 8 — percentage = 50 2. inferential or descriptive I D — in my son’s grade 3 class, 25% of the kids are under 8 and 75% are 8 or older I D — a comparison between placebo and drug treatments has determined that drug x produced a %5 reduction in the severity of symptoms of alzheimers patients I D — a non-leap year consists of 525600 minutes I D — by examining the browsing habits of individuals last week, a well -known internet retailer has estimated that 13% of those people who visit their website will make a purchase 4. the monthly cell phone bills for 100 senior citizens are summarized in the following frequency distribution table cell phone bill ($) frequency midpoint mf m2 m2f .50 = 1 - 1/K2 50 = 100 - 1 100 100 K2 1 = 100 - 50 K2 100 100 100 = 50K2 50 50 2 = K2 1.414213562 = k 1.41 = k a = 115 - 1.41 x 8 = 103.72 b = 115 + 1.41 x 8 = 126.28 At least 50% of the glasses contain a calcium level between 103.72 grams and 126.28 grams a. using the frequency distribution table calculate the mean cell phone bill amount mean = ∑mf = 4840 = 48.40 The mean cell phone bill is $48.40 N 100 b. using the frequency distribution table and treating the data as population data calculate the standard deviation σ2 = ∑m2f - (∑mf)2 247300 - (4840)2 5c. cv = s x 100% = 8.2686 x 100% = 39.3695% x 21 d. calculate the quartiles and IQR: 0 9 14 15 16 18 19 20 21 | 21 25 26 26 27 28 30 31 32 IQR = 26 -16=11 lowest value within inner fence is 0 11x1.5 = 16.5 highest value within inner fence is 32 16-16.5 = -.5 there are no outliers in this data 27+16.5 = 43.5 f. what is an advantage of using a box-and-whisker plot compared to a stem and leaf visualize center, spread and skewness. detect outliers — more information g. what is the percentile rank of a teen who smokes 31 per day — what does this say? number of data below 31 = 16 x 100 = 88.89 (round up) — 89% number of observations 18 89% of the teens smoke than than or equal to 31 per day h. true or false T F — if the sample of teens is selected in a way that ensures that each one has an equal chance of being selected, this is a random sample T F — if the sample is selected in a way that ensures that 9 of them are selected from the male and the other nine from the females, this is systematic random sampling 10 to less than 20 1 20+10/2 = 15 1x15 = 15 225 225x1 = 225 20 to less than 30 9 30+20/2 = 25 9x25 = 225 625 625x9 = 5625 30 to less than 40 10 30+40/2 = 35 10x35 = 350 1225 1225x10 = 12250 40 to less than 50 26 40+50/2 = 45 26x45 = 1170 2025 2025x26 = 52650 50 to less than 60 43 50+60/2 = 55 43x55 = 2365 3025 3025x43 = 130075 60 to less than 70 11 60+70/2 = 65 11x65 = 715 4225 4225x11 = 46475 Total 100 ∑mf = 4840 ∑m2f = 247300
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper smartzone. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €10,23. Je zit daarna nergens aan vast.