100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete ARMS Midterm Summary (JASP) €6,99
In winkelwagen

Samenvatting

Complete ARMS Midterm Summary (JASP)

 127 keer bekeken  9 keer verkocht

A complete summary of all Grasple Lessons for the Midterm of ARMS at the University of Utrecht. Summary contains clear notes with important terms in bold, screenshots of all lessons (including the questions, answers, images and figures), screenshots of JASP, step by step explanations of how to perf...

[Meer zien]

Voorbeeld 4 van de 91  pagina's

  • 6 december 2023
  • 91
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (25)
avatar-seller
noasmink
All ARMS: Grasple Lessons 2022-2023

Grasple Lessons Recap

Linear Regression

A Simple Linear Regression is used to describe a model where there is only 1 independent
variable.

A correlation coefficient, or Pearson’s r, is used for two numerical variables (ratio or
interval)
The correlation is a standardized measure and multiple strengths of relationships can
be compared because of that.

However, a low correlation or a correlation of 0 does not mean that there is no
correlation between the two variables. Relationship can also be non-linear.

Thus, it’s always important to graph your regression and create plots.

A correlation is not per definition a causal relation!

If two variables are correlated, this means that a change in one of the variables will
also mean a change in the other variable. What the cause is, can be concluded through
an experiment.

The 4 types of variables are
1. Nominal (random variables with only a name, no specific order, like gender)
2. Ordinal (variables with a specific order but no quantitative properties)
3. Interval (variables with quantity, but don’t go below 0 and have intervals)
4. Ratio (variables on the numerical scale of all ratio’s, ‘normal’ numbers)

The first step when determining a relationship and seeing whether a linear regression is
useful, is to create a scatter plot. A linear regression should only be performed on linear
relations.

To predict a value on a regression line, you need a regression equation.
1. Find the slope
a. How much does Y increase when X increases by 1?
2. Find the intercept
a. Where does the regression line cross the y-axis?

Y-value = intercept + slope x X-value




Y hat means predicted score, not observed score.

,To determine how to draw the best suited regression line in a graph with a lot of data points,
we use the least squares method.




Error, or residual.

A residual can be positive or negative, whenever when adding these together the sum could
end up being 0 without it being the most fitting line.

When you square the errors, they will always be positive and not cancel each other.
Smallest possible sum of squared errors.
Least squares method.

To find the slope of the regression model, find the Unstandardized B Coefficient in the table.
To find the intercept of the regression model, find the Intercept in the table.




Fit of the model, goodness of fit can be assessed through a number, for example R-squared.

R^2 determines the proportion of variance of the response variable that is ‘explained’
by the predictor variable(s).

The R-squared is a proportion between 0 and 1.

If the R-squared is very large, is does not necessarily mean that the model is useful for
predicting new observations, and same goes for a low R-squared being bad for
predicting.

,JASP Introduction

It is not possible to change the data in the original file in JASP alone!
To analyze data, you can use descriptive statistics and graphs.

Descriptives > Descriptive Statistics




Bayesian Hypothesis testing and the Bayes Factor

Usually, you do
Research question > Null-hypothesis (H0) > Test > Accept or reject (based on p-value)

This is called Null Hypothesis Significance Testing (NHST)
NHST implies that you can only say, ‘nothing is there’ or ‘something is there’, and if
there is, effect sizes such as Cohen’s d are examined.

This can create problems for scientists, as they have pressure to report significant
findings.

Problems with NHST are
• Publication bias
• Sloppy science
o Questionable research practices, such as choices in data processing to increase
chance of significant findings
• Replication crisis
o Much research cannot be replicated with the same results

Bayesian Way can help with this.

In Bayesian Hypothesis Testing, we check how much evidence there is in the data for one
hypothesis versus another hypothesis. The measure of relative support is called the Bayes
Factor.

The Bayes Factor tells us how much more one hypothesis is supported in comparison to
another.

A BF H0 HA = 5 means there is 5 times more support for H0 than HA.

, The support that we find in the data for a hypothesis is dependent on 2 things:
1. The fit of the hypothesis to the data
2. The specificity of the hypothesis




ANOVA and Error rates

An ANOVA is a test for comparing 2 or more means.

One can also use a t-test, like for 2 paired samples, or 2 independent samples.
A t-test used for 2 independent samples (and assuming equal population variances for
the outcome variable in the compared groups) is equivalent to an ANOVA when used
for 2 groups.

A first extension of an ANOVA is that also 3 or more groups can be compared, unlike
t-test.

Differences in sample means do not automatically imply that this difference is valid for the
entire population.

There will always be a sampling variation. This implies that the results in a next
sample from the same population will be somewhat different. This is called sampling
variability, or sampling error.

Analysis Of VAriance.

The assumptions for an ANOVA are:

1. Within each group, the scores for the dependent variable are normally distributed.
2. There are no outliers in the scores of the people on the dependent variable.
3. The variance of the scores on the dependent variable are the same in each group.
4. The scores of the people on the dependent variable are mutually independent.

Violation of 2 & 4 will always be problematic for interpretation of results!

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper noasmink. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48072 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  9x  verkocht
  • (0)
In winkelwagen
Toegevoegd