Module 1 - CLV in Contractual Settings
Definition: CLV is the PV of future profits of one particular customer
We look at specific cohorts that started at t = 0
Survival function (prob that a customer is still active, thus compared to t = 0)
=
S(t) = P (T > t)
Retention rate (prob that a customer who was active in t − 1 it still active at the end of t, thus compared
to the last period)
=
S(t)
r(t) = P (T > t|T > t − 1) =
S(t − 1)
Geometric Model
Coin-flipping
Probability that a customer leaves (i.e. T ) at period t
P (T = t) = pt−1 (1 − p)
Thus, S(t) = pt
r(t) = p
CLV looks at new customers, but RLV looks at customers that did start before t = 0
RLV = already acquired customers = they tend to have lower churn rates than new customers
i.e. for customers with an age > 0 at t = 0
RLV right before renewal:
mp2 mp(1+d)
E[RLV ] = mp + (1+d) + ... = 1+d−p
RLV right after renewal:
You have to discount with one additional /(1 + d) , so it goes away in the upper term
E[RLV ] = mp
1+d−p
Ruse of heterogeneity
In a given cohort, the retention rate increases over time due to heterogeneity = sorting effect
CAC and ROI
Customer Acquisition Cost: to be profitable CAC < CLV =
marketing expenditures
CAC =
customers acquired
Return on Investment = ROI = prof it
cost = CLV −CAC
CAC
Shifted Beta Geometric Model
Model with a distribution of retention rates across customers; we have to write the survival function
in terms of θ
S(t|θ) = pt = (1 − θ)t
With the distribution of θ between 0 and 1 with parameters a and b
Beta Distribution:
θa−1 (1 − θ)b−1
f (θ|a, b) =
B(a, b)
With mean = a
a+b and variance = ab
(a+b)2 (a+b+1)
This gives the new survival function and retention rate:
B(a, b + t) b+t−1
S(t|a, b) = r(t|a, b) =
B(a, b) a+b+t−1
r(t) increases over time, depending on a and b
• small a and b: retention rate rises quickly but levels off quickly
• medium a and b: rate of increase in retention slows down
• large a and b: hardly any increase; almost a constant retention rate
• a and b relatively equal in value: symmetric beta distribution
2
, • b > a: skewed to the right; values are closer to 1
• a > b: skewed to the left; values are closer to 0
In this model, you can estimate using the maximum likelihood function
Calculating CLV with the sBG
Each term contributes less to CLV, because of discounting and the diminishing survival function
You need a suitably large T, to estimate the same E[CLV ] function as before (you can ignore the latest
terms because they are so small)
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lisaholling1. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,44. Je zit daarna nergens aan vast.