100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Roadmap Markov Processes €6,49
In winkelwagen

Samenvatting

Summary Roadmap Markov Processes

 0 keer verkocht

An accurate Roadmap of all the (sub)exam questions of Markov Processes.

Voorbeeld 2 van de 6  pagina's

  • 12 december 2023
  • 6
  • 2021/2022
  • Samenvatting
avatar-seller
jetstibbe
Stappenplan Markov Processen (per type vraag)


Onderdeel 1: Discrete-time Markov Chain

Q1: Check if a process is Markovian or not (if not: redefine states)
Smartly think about how to define a Markov Process (and it’s states)

Q2: Calculate n-step probability
First: check if i is given (if not: unconditional, use law of total probability (ex. 2.1))
If P^(n) not given: think about potential paths for a fixed j (p.33 handout)
If P^(n) given: use it to calculate the probability (ex. 2.1/2.2)

Q3: Distinguish recurrent and transient classes
Look at which states are communicating: those form a class,
Recurrent: if there is only one class and finite states (by Markov property!)
will never leave the communicating states again
positive, only maybe null when infinite states
f(i) = 1
Transient: often has a class that has path leading to a recurrent class (p.44)
f(i) < 1
(Irreducible: if there is only one class)
(Ergodic: if it’s positive recurrent and aperiodic)

Q4: Argue that a state is (a)periodic
Easiest way: find a state which has a direct path back to itself
(automatically aperiodic), any communicating states are also aperiodic
From the definition: for aperiodicity: find two paths back which have 1 as their gcd
for the amount of steps. (p.45)



Q5: Write down the steady-state equations πi (and solve them)
(Must be irreducible ergodic MC)

First: Use πi = (P^T)(π0 + π1 + …)
Don’t forget: (π0 + π1 + …) = 1 (ex. 3.1)
Sometimes partly asked: (where lim(m→∞) P(Xm = i) = πi is used in the equation)
(oefentt)



Q6: Calculate long-run expected reward/cost r(j)
Compute average reward per time unit (mean): Σr(j)*πj (p.48)
Note: r(j) can be either deterministic or Random
if Random: ΣE(R|being in state j)*πj

, s(ij) = expected number of time periods MC is in state j, given it starts in i (p.54)
f(ij) = probability MC ever enters state j, given it starts in i (p.56)
note that i, j ∈ T
m(iR) = the mean time to enter the (only) recurrent class R, given it starts in i (p.56)
f(iR1) = the probability MC ever enters recurrent class R1, given it starts in i (p.57)
note that i ∈ T



Q7: Calculate these quantities
First: try to figure from real-life question which one it’s about:
Calculating: s(ij), when the expected number of times a transient state j is asked,
write P(T) as the matrix with only transient states (ex. 4.1)
f(ij), probability of entering a transient state j before a Rec. state (e.g.)
(with given i), sometimes make another transient state
absorbing and then write f(ij)’s (ex. 4.4a)
m(iR), when mean time to enter a recurrent class (with given i),
can sometimes be a class that you made absorbing,
then add all states of R in one column/row (ex. 4.4b)
f(iR1), when the probability of entering a specific recurrent class R1 is
asked (with given i), only look at transient classes of P other
than looking at R1 (ex. 4.2d)
Sometimes for m(iR) and f(iR1): define the recurrent classes smartly, collapsing all
recurrent states into one (of a class) may simplify the matrix.
Or for s(ij) and f(ij): (e.g.) design states to be absorbing to use these quantities



Onderdeel 2: Poisson process

Q8: Calculate (conditional) probabilities regarding a counting event
First: try to make use of the independent and stationary increments as much as
possible, try to rewrite so you can make use of independence or a standard
form of which you know the mean/variance. Try to transform the covariance
into properties you know (i.e. independence or known variance). (oefentt)
For conditional probability: try to transform into disjoint intervals/variables, so the
condition doesn’t play a role (independent/stationary increment) (ex. 6.5b)

Q9: Calculate (conditional) expectation regarding an arrival time
First: try to make use of the independent and stationary increments as much as
possible
For conditional expectation: try to transform into disjoint intervals/variables, so
condition doesn’t play a role (ex. 6.3)
(ex. 7.4)

Note: you can convert counting problem into an arrival time problem and
vice versa: N(t) ≥ n ⇔ Sn ≤ t (p.71)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jetstibbe. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49
  • (0)
In winkelwagen
Toegevoegd