100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Begrippen van kennisbasis rekenen

Beoordeling
4,5
(2)
Verkocht
12
Pagina's
7
Geüpload op
27-02-2018
Geschreven in
2016/2017

De begrippen die aan bod komen tijdens de kennisbasis rekenen zijn in dit document allemaal uitgeschreven. Ook met plaatjes etc.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 februari 2018
Aantal pagina's
7
Geschreven in
2016/2017
Type
Samenvatting

Voorbeeld van de inhoud

Talstelsel: systeem om hoeveelheden op te kunnen schrijven en ermee te kunnen rekenen
dat voor iedereen begrepen en gehanteerd kan worden.
Romeins getalsysteem: I V X L C D M (van 1 t/m 1000).
Additief talstelsel: systeem waarin de waarde van het voorgestelde getal bepaald wordt door
het totaal van de symbolen. Het nadeel hiervan is dat het een beperkt aantal symbolen heeft
en het rekenen op een blaadje is lastig. Er is geen symbool nodig voor nul.
Positiestelsel: de waarde van een cijfer wordt niet alleen bepaald door het cijfer zelf, maar
ook door de plaats waar dat cijfer in het getal staat. Er is een symbool voor nul. De basis van
ons positiestelsel is 10.
Binair talstelsel: bestaat alleen uit een 0 en 1. De plaats van het cijfer (0 of 1), bepaald de
waarde.
Hexadecimale stelsel: maakt gebruik van cijfers en letters om tot 16 te komen.
Visualiseren van getallen kan op twee manieren: materialen (blokjes), modellen (getallenlijn,
met geld kun je het tientallig stelsel in beeld brengen en door de verschillende waarden kan
het positiestelsel inzichtelijk gemaakt worden). Door gebruik te maken van materialen en
modellen wordt de opgave zichtbaar en inzichtelijk voor de leerling, zo krijgt de leerling meer
grip op de getallen en bewerking. Op een gegeven moment moeten leerlingen het ook
zonder hulpmiddelen kunnen, de leerling moet dan kunnen wegdenken. De getallenlijn is
een belangrijk model om inzicht te krijgen in het positiestelsel, het gaat om de waarde die
een cijfer heeft op basis van de plaats van het getal en om welke plaats een cijfer heeft
binnen de verzameling van alle cijfers, het maakt het mogelijk om denkstappen in beeld te
brengen en het sluit aan bij de ontwikkeling van getalwaarde, omdat de posities van de
getallenlijn duidelijk zichtbaar zijn.
Positioneren: getallen op de getallenlijn plaatsen.
Model: schematische weergave van de achterliggende bedoeling van een bewerking of een
opgave, is bedoeld om inzicht te krijgen in de wiskundige handeling of bewerking, het is om
inzichtelijk te maken wat er gebeurt bij optellen op de getallenlijn.
Context: betekenisvolle situatie gebaseerd op een (wiskundig) model, een context is zo
ontworpen dat het model dat de wiskundige handeling inzichtelijk maakt voor de hand ligt.
Ontwerpen van een context: het begint bij het vaststellen welk model bij de opgave hoort,
dan kan er gekozen worden uit een rijke hoeveelheid contexten. Het leren van de leerling
begint bij de context en komt via het model bij de formele opgave.
Bewerkingen: rekenkundige activiteiten die met getallen uitgevoerd kunnen worden;
optellen, aftrekken, vermenigvuldigen en delen. Bewerkingen leiden naar een resultaat.
Optellen: samenvoegen van hoeveelheden. Termen: getallen die bij elkaar opgeteld worden.
Som: uitkomt van optelling. Modellen bij optellen: groepjes, strook, honderdvel, getallenlijn.
Rijgen: strategie waarbij een optel- of aftrekopgave wordt opgelost door het eerste getal heel
te laten en het tweede getal in stukjes erbij te doen of eraf te halen (in tienvouden en
eenheden wordt dit toegevoegd).
Aftrekken: gaat niet altijd over het verschil tussen twee grootheden. Aftrektal: getal waarvan
wordt afgetrokken. Aftrekker: het getal dat van het aftrektal afgetrokken wordt. Verschil:
uitkomst van een aftrekking. Vier manieren om naar aftrekken te kijken: splitsen (wanneer bij
een hoeveelheid wordt gevraagd hoeveel erover blijft als er alvast een groepje benoemd
wordt (beide getallen worden opgesplitst in tientallen en eenheden etc. en er kan gebruik
gemaakt worden van een splitstabel), verminderen (terugtellen, groepjesmodel kan worden
gebruikt, het gaat dam om een groepje waaruit elementen worden verwijderd), vergelijken

, (het verschil tussen twee hoeveelheden, wat is meer/minder/hoeveel meer/hoeveel minder,
de dubbelstrook hoort hierbij), inverse van optellen.
Vermenigvuldigen: factoren: getallen die met elkaar vermenigvuldigd worden, als twee
getallen met elkaar vermenigvuldigd worden, heet het eerste getal de vermenigvuldiger en
het tweede getal het vermenigvuldigtal. Product: uitkomst van een vermenigvuldiging. Een
vermenigvuldiging kan herhaald optellen (schaakbord/kratje bier) of vermenigvuldigen met
een factor zijn. Modellen: rechthoekmodel en groepjesmodel
Delen: het deeltal en de deler (6:3) en een quotiënt: is de uitkomst van de deling. Delen kan
gezien worden als het eerlijk verdelen, het inverse van vermenigvuldigen, ratio (verhouding;
twee hoeveelheden worden met elkaar vergeleken, het gaat altijd om de verhouding tussen
deze twee hoeveelheden).

Eigenschappen van bewerkingen
Commutatieve/ wisseleigenschap: bij + en x (door de som om te draaien blijft het antwoord
hetzelfde).
Distributieve/ verdeel eigenschap: bij +, -, : en x (bij een som met meer dan twee getallen
die bij elkaar opgeteld moeten worden o.i.d.) dit kan op de traditionele manier: 8 x (5+7) =
(8x5) + (8x7), splitsen: 18 x 25 = 10 x 25 + 8 x 25, inverse: (37 x 5,5) + 5,5 x (63) = 100 x 5,5,
om er beter uit te komen: 39 x 25 = 36 x 25 + 3 x 25 = 900 +75.
Associatieve/ schakeleigenschap: bij + en x ((3+4) + 5 = 3+ (4+5)).
Inverse relatie: bij + / - en :/ x (de som omdraaien om te controleren of hij klopt -
vleksommen).
Compenseren: er worden achteraf aanpassingen gemaakt (25 + 17 = 30 + 17 - 5)
Transformeren: er worden aanpassingen gemaakt die direct worden verwerkt (25 + 17 = 30 +
12). De voorkeur gaat naar transformeren, omdat bij compenseren vaak fouten worden
gemaakt. Optellen: bij de ene iets erbij, bij de ander er meteen af. Aftrekken: bij het eerste
getal er iets af, bij het andere getal hetzelfde. Varia aanpak: het flexibel reken met behulp
van de eigenschappen van bewerkingen.
De deelbaarheid van getallen:
2 Als het getal eindigt op 0,2,4,6 of 8. 8 Als de laatste 3 cijfers van het getal
deelbaar zijn door 8.
3 Als de som van de cijfers van het getal 9 De som van de cijfers van het getal is
deelbaar is door 3 (93 – 9 + 3 = 12 dus deelbaar door 9 (126 – 1 + 2 + 6 = 9).
ja).
4 Als de laatste twee cijfers van het getal 1 Als het eindigt op 0.
deelbaar zijn door 4 (424 – 24, dus ja). 0
5 Als het eindigt op 0 of 5. 1 Als de som van de oneven geplaatste
1 cijfers in het getal (die op de eerste,
derde, vijfde etc. plek), gelijk is aan de
som van de even cijfers (121 – 1+1= 2,
14641 – 1+6+1 = 4+4 = beide 8).
6 Als het getal deelbaar is door 2 en 3. 1 Als het getal deelbaar is door 3 en 4.
2
7 Het laatste cijfer haal je twee keer van de over gebleven cijfers af, dit doen totdat het
deelbaar is door 7.

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
5 jaar geleden

6 jaar geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
sterrerobinx Hogeschool Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
24
Lid sinds
8 jaar
Aantal volgers
24
Documenten
10
Laatst verkocht
1 jaar geleden

3,7

7 beoordelingen

5
1
4
3
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen