Samenvatting - Celbiologie partim medische genetica en embryologie - genetica
Alles voor dit studieboek
(18)
Geschreven voor
Universiteit Antwerpen (UA)
Biomedische Wetenschappen
Menselijke genetica
Alle documenten voor dit vak (36)
Verkoper
Volgen
goormansamber1
Ontvangen beoordelingen
Voorbeeld van de inhoud
Samenvatting menselijke genetica
Hoofdstuk 6: Principes van gen regulatie en epigenetica
1. Inleiding
Regulatie van genexpressie: Cis en trans acting
• Cis acting regulatie op DNA niveau:
Regulatorische sequenties: promotors en enhancers/silencers
- DNA of RNA sequentie die reguleert op zijn eigen DNA streng (b.v. promotor)
➢ Een promotor die een gen zal aanzetten → zit voor gen stroomopwaarts
➢ Enhancers/silencers liggen verder, maar ook nog altijd op diezelfde streng
• Trans acting regulatie: stuk RNA of eiwit dat diffundeert
- Een bepaalde transcriptiefactor die op een andere chromosoom gecodeerd wordt (Gen
komt tot expressie, en het eiwit wordt geproduceerd), het eiwit gaat dan een
transcriptiefactor binden op een enhancer → gaat een effect hebben op de promotor
!!! Genregulatie is héél belangrijk bij de mens; we hebben niet veel meer genen dan een vlieg of een
worm, maar wel veel meer genregulatie. Eén daarvan is op het mRNA via de 5’ en 3’ UTR; in die 5’ en
3’ UTR zitten dan cis-acting elementen, dus stukjes sequenties waarop eiwitten binden, en die eiwitten
zijn dan de transacting elementen die hierop binden en die genregulatie zullen doen.
• Cis regulatie op mRNA niveau via 5’ en 3’ UTR
• Worden gebonden door trans activerende eiwitten en miRNA’s
• Veel voorkomend, vooral miRNA binding op 3’ UTR → ze kunnen genexpressie verhinderen
• Cis acting regulatorisch element: altijd DNA of RNA sequentie
- Gen regulatie op dezelfde DNA of RNA streng
- Reguleert 1 gen
- Reguleert 1 allel (het paternaal of materaal allel)
- B.v. promotor, enhancer
• Trans acting regulatorisch element: altijd eiwit of RNA molecule
- Eiwit of RNA dat migreert door diffusie, reguleert op afstand
- Bindt op een regulatorisch element (korte DNA sequentie)
- Reguleert beide allelen van een gen (het paternaal en materaal allel)
- Kan meerdere genen tegelijkertijd reguleren
• Regulatie is altijd een combinatie van cis en trans
- Enhancer (cis) en transcriptiefactor (trans) die erop bindt
- miRNA bindende sequentie (cis) en miRNA (trans) dat erop bindt
2. Genetische regulatoren van genexpressie
Promotors
Een promotor zit vóór de sequentie die vertaald zal worden tot eiwit; het is eigenlijk een aan-uit-knop
van genen.
• RNA pol II: schrijft eiwit coderende genen, lncRNA’s (lange niet coderende), en miRNA’s af
- Vormt een groot transcriptie initiatie complex met algemene transcriptiefactoren
- Vormt zich op (cis-acting) consensus sequenties in de buurt van de transcriptie start plaats:
De Promotor
• RNA pol I: schrijft meeste ribosomale RNA’s af
• RNA pol III: schrijft tRNA genen, één ribosomaal RNA, en sommige kleine RNA’s af
, • Belangrijke figuur: algemene structuur van promotor
- Promotor strekt zich uit over een kleine 100 bp
• RNA pol II promotor bevat typisch:
- BRE: TFIIB recognition element
➢ TFIIB: transcriptiefactor II B
- TATA box
➢ Eerste 4 basen van de consensus sequentie
- Inr: initiator element (A is transcriptiestartplaats)
- DPE: downstream core promotor element
• Core promotor is een stukje van maximaal 70 BP (vrij klaar)
• Halverwege is er een transcriptiestartplaats = A = is de eerste base die tot RNA wordt opgezet
- Transcriptiestartplaats zit ook in een consensus sequentie die het initiator element
wordt genoemd
• Geen twee promotoren zijn hetzelfde, het kan heel variabel zijn
- Er zijn zelfs promotoren die geen enkel van deze elementen hebben
• Veel voorkomende elementen, maar geen ervan is nodig noch voldoende voor promotor
activiteit (niet alle promotors bevatten alle 4 elementen) → Vele promotors hebben geen van
deze elementen
Enhancers en silencers (+ boundaries en insulators)
• Cis acting sequenties van typisch 4-9 bp
• Bevinden zich zowel stroomopwaarts als stroomafwaarts
- In vele gevallen binnen de 1,5 kb, maar soms verder, op een paar 100.000 BP of verder
• Enhancers: versterken expressie
• Silencers: onderdrukken expressie
- Enhancers en silencers zijn gelegen binnen een bepaalde domein begrensd door
boundaries. Binnen zo’n domein werken enhancers en silencers, maar daarbuiten niet
• Boundary sequenties:
- Insulators: blokkeren interactie tussen enhancer en promotor door regulatorische eiwitten
te binden
➢ Als je een enhancer op een bepaalde plaats hebt en een promotor een beetje
verder, dan kan die enhancer op die promotor werken !tenzij er een insulator
tussen zit
- Barrière elementen tussen euchromatine en heterochromatine (zie verder 6.3).
Let op het grote verschil tussen epigenetische en genetische boundary sequenties
➢ Barrière elementen doen hetzelfde als de insulators maar dan op epigenitisch
niveau, dus gaan de epigenitica afbakenen. Epigenetica lijdt tot chromatine
condensatie. Wanneer chromatine volledig gecondenseerd is, is die
transcriptioneel inactief.
• Transcriptiefactoren zijn DNA bindende eiwitten
• Binden op cis acting sequenties
• Combinatorial: verschillende transcriptiefactoren binden tegelijkertijd
, • Co-activatoren en co-repressoren
- Moduleren de actie van transcriptiefactoren zonder dat ze DNA binden
- Werken via eiwit-eiwit interacties met regulatorische eiwitten
Topologically associating domains (TADs) → ons genoom is opgedeeld in TADs
• Genomische regio die promotor enhancer interacties limiteert
• Afgebakend door boundaries
• Evolutionair geconserveerd tussen species → De TADs die wij hebben en die van andere
zoogdieren lijken op elkaar (wij hebben niet dezelfde chromosomen als een muis, maar de
volgorde op het chromosoom is wel grotendeels hetzelfde).
• Worden bepaald via genoomwijde interactie studies (zo worden die driehoeken dus bepaald)
• Correlatie met chromatine structuur domeinen
• Verklaren hoe deleties en inversies nabijgelegen genen buiten de deletie of inversie kunnen
beïnvloeden
• Gebied waarin verschillende genen zitten en ook verschillende enhancers/silencers en in dat
gebied kunnen er interacties zijn. Via technieken kun je die interacties in kaart brengen
(driehoek). Daarnaast heb je een andere gebied waarin andere genen gelegen zijn en andere
enhancers.
• Ons genoom is opgedeeld in stukjes = TADs, welke afgesloten stukjes zijn waarbinnen
enhancers en silencers de promotoren van genen kunnen beïnvloeden (daarbuiten kan het
niet). In zo’n TAD kunnen meerdere genen zitten, maar de regulatie gebeurt dus enkel binnen
zo’n TAD.
• TADs kan je echt beschouwen als afzonderlijk stukjes van het DNA; een chromosoom is een
lange DNA draad, die opgedeeld zit in TADs. Op het van die TADs, aan die boundaries zit een
bepaald insulator-eiwit = zink finger (= DNA bindende eiwitten). Die zink finger kan in de grote
groeve van het DNA “voelen” en bepaalde sequenties gaan herkennen; zo’n zink finger zit dus
op de boundarie vast. Het bindt een bepaalde consensus sequentie met 3 repeats van CCCTC
(het heet dan ook CCCTC binding factor). Op die CCCTC-repeats zal het CTCF-eiwit binden. Ook
cohensine zal binden en eigenlijk de boundarie maakt.
, • In de kern heb je bepaalde gebieden. Aan het begin en einde van het gebied komen die DNA-
strengen samen en worden die verbonden door cohesines. Dus die DNA-strengen gaan zich
verbinden. Er is ook een bepaald eiwit (CTCF) dat de regio gaat afsluiten. In een interfase kern
zitten geen chromosomen, het is pas in de metafase dat die zich vormen. Chromosomen vallen
dan uit elkaar in die gebiedjes en die gebiedjes worden op zichzelf gereguleerd met enhancers
en silencers → rede waarom enhancers en silencers in de buurt liggen van genen
- Sommige van de gebieden kunnen heel groot zijn, maar de meeste van de TADs zijn
kleiner en die worden op zo’n manier gereguleerd.
• Zink finger eiwitten zijn eiwitten die DNA kunnen binden en die kunnen dus die
enhancer/promoter interacties beperken.
• Cirkel: voorstelling van nucleus met elk van die kleurtjes een chromosoom. In de metafase gaan
de chromosomen zich samentrekken (x-vormige structuurtjes) en nadien vallen die uit elkaar
(vage regio’s). De chromosomen blijven wel van elkaar gescheiden, dus blijven in hun eigen
regio → chromosomale territorea
• Binnen in zo’n 1 territorium is er nog een indeling en dat is de indeling in TADs
- Repressed TADs (= komen niet tot expressie): tegen de nucleaire lamina
- Actieve TADs: verder van nucleaire lamina
• Binnen de TADs gaat de genregulatie gebeuren met die enhancers en silencers
- Enhancer kan enkel inwerken op het DNA binnen de TAD → rede waarom
enhancer/silencer vrij in de buurt ligt van een promotor.
• Alle groene dingen (enhancer/silencer) kunnen inwerken op alle genen van de TAD.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper goormansamber1. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.