Ik heb het onderdeel van professor Bammens van het vak ziektemechanismen zeer goed en gedetailleerd samengevat. Ik vond het deel van Bammens enorm ingewikkeld, daarom dat ik een uitgebreide samenvatting gemaakt heb die alles heel goed uitlegt. Je hoeft in principe zijn lessen niet meer te volgen al...
[Meer zien]
Laatste update van het document: 10 maanden geleden
Zuur-base
Zuur = elke chemische substantie die een H+ kan doneren
Base = elke chemische substantie die een H + kan accepteren
geheugensteuntje: zure werknemer moet altijd afgeven, baas wilt hebben
pH = -log[H+] ∆[H+] factor 10 = ∆pH van 1 (stap van 1 is dus een factor 10)
-> klein verschil in pH-waarde geeft groot verschil in [H +]
We meten de pH van de arteriële bloedplasma, die gewoonlijk 7,35 à 7,45 is
- Homeostase van pH binnen nauwe grenzen is belangrijk omdat de conformatie en functie van
de meeste biologische moleculen pH-afhankelijk zijn!
- Leefbare plasma pH schommelt tussen 6,8 en 7,7
- De pH van een cel is gemiddeld 7,2
Zuur-base evenwicht door 3 elementen gerealiseerd:
- Extra- en intracellulaire buffers
- Eliminatie van CO2 door de longen
- Recuperatie en nieuwvorming van HCO3- door de nieren
Biochemische buffering
- Buffer = substantie die H+ kan opvangen en vrijlaten afhankelijk van de pH
- Buffers zorgen voor de eerste opvang van nieuwe H + op de plaats waar ze ontstaan
o Longen & nieren doen het latere werk
- Buffers minimaliseren de pH veranderingen, maar verhinderen ze niet
- Evenwichtsreactie:
o Bij stijging van [H+] verschuift het evenwicht naar rechts
o Maar een aantal zullen vrij blijven -> ∆pH
Intracellulaire buffer
- Proteinen en organische fosfaten bufferen extra-cellulaire H + in uitwisseling voor
intracellulair K+ en Na+
Bot als buffer
Vooral bij chronische acidose:
- H+ uitwisselen met fosfaat en Ca+ -> bot verliest zijn kwaliteit
Buffers in het bloed
De belangrijkste buffers (kwantitatief) in het bloed:
- (oxy)hemoglobine (35%)
- Plasma-bicarbonaat (35%)
- Erythrocytair bicarbonaat (18%)
Bicarbonaat is dus de belangrijkste extracellulaire buffer (kwantitatief) in het bloed (53%)
o Makkelijkst om te meten -> als maatstaf voor buffertoestand vh lichaam
o Iso-hydris-principe: de verhoudingen waarin het bufferen gebeurt is steeds dezelfde
-> we kennen ook de toestand van de andere buffers
Hemoglobine is de belangrijkste niet-bicarbonaat buffer in het bloed (35%)
, 24
Hemoglobine
- Histidine 146 in β ketens bindt H+
- Grotere buffercapaciteit in gedesoxygeneerde toestand
o Logisch want op plaats van O2-verbruik worden zuren gevormd -> als Hb dus O 2 heeft
afgegeven is er plek om H+ te binden
- Zuurdere pH verplaatst de O2-dissociatie-curve naar links
o In een zuurdere omgeving is er competitie tussen
protonen en O2 om aan Hb te binden
o Bij eenzelfde O2-spanning binden er minder O2-moleculen
aan Hb (maar saturatie kan nog steeds bekomen worden)
o Omgekeerd: het kost voor een zuurder persoon meer
moeite om Hb gesatureerd te krijgen met O2
Bicarbonaat
Open buffersysteem een zeer sterke buffer!!
Waarom is ons buffersysteem open langs 2 kanten?
- CO2 kunnen we wegblazen via ademhaling
- HCO3- kunnen we bijmaken via nieren
H2CO3 is slechts in lage concentratie aanwezig omdat het snel wordt
omgezet naar H+ en HCO3- en naar (door koolzuuranhydrase) CO2 en H2O
CO2 als het zwakke zuur (BH) en HCO3- als zwakke base (B-) = buffervergelijking
pK van HCO3- = 6,1
s = oplosbaarheidscoëfficiënt van CO2 i/h
oplosmiddel (plasma) -> 0,03 bij zoogdieren
= Henderson-Hasselbalch vergelijking
Situatie waarbij pH = pK:
- Buffer is half geprotoneerd, half niet-geprotoneerd
- Helft voor protonen zijn vrij, en helft is bezet -> goede buffer
want kan zowel protonen ontvangen als protonen afgeven
o In een gesloten buffersysteem geeft pK de pH aan
waarbij de buffer de grootste buffercapaciteit heeft
HCO3--buffer in gesloten systeem is geen krachtige buffer, maar in een
open systeem wel krachtig!
Eliminatie van CO2 door de longen
CO2 ontstaat uit:
- Volledige oxidatie van koolhydraten (RQ 1) en vetten (RQ 0,7) : CO 2 + H2O
- Volledige oxidatie (meeste) neutrale aminozuren (RQ 0,8): ureum + CO 2 + H2O
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper shantalverwimp. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.