100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary 'Data Mining for Business analytics' €5,48
In winkelwagen

Samenvatting

Summary 'Data Mining for Business analytics'

 8 keer verkocht

Comprehensive summary of the book 'Data Mining for Business analytics'. Focused on the important topics and chapters which will come back in the exam.

Voorbeeld 2 van de 10  pagina's

  • Nee
  • Ch1 - ch14
  • 27 maart 2018
  • 10
  • 2017/2018
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (4)
avatar-seller
Resumer
Data mining for business analytics

Chapter 1
Business analytics (BA) is the practice and art of bringing quantitative data together
to bear decision making. It includes a range of data analysis methods
Next level of analytics is Business Intelligence. It refers to data visualization and reporting
for understanding.
Data mining refers to business analytics that go beyond (BA) count, descriptive
techniques, reporting and methods based on business rules. Data mining methods have the
ability to cope with huge amounts of (big) data and extract value. Synonyms for data mining:
predictive analytics, predictive modelling and machine learning.
Machine learning vs. statistics: it is not the same. Statistics is focused on the
‘average effect’ on a box while machine learning is focused on predicting individual boxes.
With data mining there is the risk of overfitting, which is not allowed in statistics.
Definition of machine learning in this book: algorithms that learn directly from data.
Definition of statistical models: methods that apply global structure to data. Many
practitioners use machine learning to refer to all the methods from this book.
Big data is a relative term. The challenges of it are often related to four V’s: velocity
(speed), veracity (organic, so no quality standards), variety, volume.
Data science is a mix of skills in the area of business, statistics, machine learning,
math, programming and IT. A data scientist is a rare individual who combine deep skills in all
constituent areas.

, Chapter 2
The core of the book focus on what’s called predictive analytics: the tasks of
classification and prediction as well as pattern discovery, which have become key elements
of a business analytics function.
Core ideas in data mining: classification is perhaps the most basis form of business
analytics. Persons pays or not, respond or does respond or not etc. Task of data mining is to
examine whether the classification is unknown or will occur in the future. Prediction is
similar to that, except that we are trying to predict the value of a numerical value rather
than a class (yes or no). → refers to prediction of the value of a continuous variable.
Association rules or affinity analysis is designed to find general associations patterns
between items in large databases.
Online recommendation systems (Amazon & Netflix) use collaborative filtering, a
method that uses individual user’s preference based on history, behaviour etc.
Classification, prediction, and, to some extent, association rules and collaborative
filtering constitute the analytical methods employed in predictive analytics.

The process of consolidating a large number records (or cases) into smaller set is
called data reduction. Methods for reducing the amount of cases are often called clustering.
Reducing the number of variables is called dimension reduction, which is a common step
before deploying supervised learning methods on the data.
Exploration is in one of the earliest stages of engaging with the data and is about
understanding the global landscape of the data and detecting unusual values. Methods are:
looking at different aggregations, check individual values and relationships between them,
creating charts and dashboards → data visualization or visual analytics.

Fundamental distinction among data mining techniques: supervised learning
algorithms are those used in classification and prediction. You need to have train data so the
algorithm can ‘train’ and learn on it. Then you need validation data to benchmark with other
models and after that you can use the model at a case where the outcome is unknown.
(example: simple linear regression model). Unsupervised learning algorithms are those used
where there is no outcome variable to predict or classify. Association rules, dimension
reduction methods and clustering techniques are examples of unsupervised methods.

List of steps to be taken in a typical data mining effort:
1. Develop an understanding of the purpose of the data mining project
2. Obtain the data set to be used in the analysis
3. Explore, clean and preprocess the data
4. Reduce the data dimension, if necessary
5. Determine the data mining task (classification, prediction, clustering etc.)
6. Partition of the data (for supervised tasks)
7. Choose the data mining techniques to be used
8. Use algorithms to perform the tasks (iterative process)
9. Interpret the results of the algorithms
10. Deploy the mode

These steps encompass the steps in the SEMMA methodology, developed by SAS:

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Resumer. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68443 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,48  8x  verkocht
  • (0)
In winkelwagen
Toegevoegd