These are lecture notes of Intelligent Systems from the study Lifestyle Informatics/Artificial Intelligence at VU Amsterdam. Everything marked in yellow is extra important, everything that's blue is an example.
INTELLIGENT SYSTEMS
LECTURE 1 – INTRODUCTION
MACHINE AS AN INTELLIGENT AGENT
Main methods to optimize for the best expected outcome: Text/image processing, data integration,
knowledge representation, automatic reasoning, machine learning and genetic programming (writing code to
improve its own behavior).
Philosophical questions: What is consciousness/free will? Can a machine be creative/have rights?
Ethical questions: surveillance/privacy, responsibility, accountability, using/misusing IS.
Representing problems as state spaces problems (because the world is absurdly complex) à state spaces must
be abstracted/simplified for problem solving à (Abstract) solution = set of real paths that are solutions of the
real world.
1. What actions and states to consider, given a goal:
o What are appropriate states and initial states? (atomic)
o What are the possible actions to move between states? (atomic)
o What is the cost of an action?
2. Goal formulation: what are the successful world states?
3. Search: determine possible sequences of actions that lead to goal states and choose the “best”
sequence.
4. Execute: Give the solution and perform the actions.
Example - Romania:
⁃ Concrete problem: In Arad, flight from Bucharest.
o States: various (representation of) cities
o Actions: drive between cities
⁃ Concrete goal: Be in Bucharest
⁃ Find solution: sequence of best states (Arad à Sibiu à
Fagaras à Bucharest)
⁃ Execute plan: buy tickets + travel
SEARCH
Search through explicit tree generation:
1. ROOT = initial state
2. Nodes and leafs generated through successor function (related to action)
State = a (representation of) a physical configuration
Node = a data structure belonging to a search tree
1
,SEARCH STRATEGIES
Strategy = picking order of node expansion. Performance is measured in 4 ways:
1. Completeness: does it always find a solution if one exists?
2. Optimality: does it always find the least-cost solution?
3. Time Complexity: number of nodes generated/expanded?
4. Space Complexity: number of nodes stored in memory during search?
a. Time & Space complexity are measured in terms of problem difficulty:
i. b – maximum branching factor of the search tree (amount of possible choices)
ii. d – depth of the least-cost solution (best solution: best distance between root)
iii. m – maximum depth of the state space (may be infinite)
UNINFORMED SEARCH STRATEGIES
Uninformed search strategies (a.k.a. blind search) = use only information available in problem definition:
• Breadth-first search = expand SHALLOWEST unexpanded node
o Implementation: fringe is a FirstInFirstOut (FIFO) queue (A à B à C à D à E à F…)
§ Completion: Yes, if b is finite
§ Time complexity: Yes
§ Space complexity: Yes, if each node is retained in memory
§ Optimality: Yes, unless actions have different costs
• Disadvantage: longest path
• Depth-first search = expand DEEPEST unexpanded node
o Implementation: fringe is a LIFO queue (= stack) (A à B à D à H & I à E à J & K à C…)
§ Completion: No, unless search space is finite and no loops are possible
§ Time complexity: Yes, if many solutions, a bit faster than BF
§ Space complexity: Yes, backtracking search uses even less memory
§ Optimality: No, unless search space is finite and no loops are possible
• Depth-limited search = DF-search with depth limit l
§ Completion: Yes (if I >= d)
§ Optimality: No
• Depth-first Iterative Deepening search = Breadth-F + Depth search
§ Completion: Yes (no infinite paths)
§ Space Complexity: Yes
§ Optimality: Yes
• Bidirectional search
• Uniform-cost search
General approach of informed search: best-first search (node is selected for expansion based on an evaluation
function f(n). Fringe = queue sorted in decreasing order of desirability.
Heuristic function = educated guess that reduces or limits the search for solutions in domains that are difficult
and poorly understood. Describes the expected quality of a node.
• h(n) = estimated cost of the cheapest path from node n to goal node.
• If n is goal, then h(n) = 0.
• Complete knowledge: often not available & too expensive to calculate
• Use partial knowledge/human expertise = educated guess (can be completely wrong)
Two elements, h1(n) and h2(n), with 0 < h1(n) < h2(n) < h *(n), then h2(n) is more informed than h1(n).
• Perfect heuristics: h(n) = h*(n)
• Trivial heuristics: h(n) = 0
o Advantage: With h1 fewer nodes have to be searched with h2
o Disadvantage: h2 is often more expensive to calculate.
ADVERSARIAL SEARCH
Games are a form of multi-agent environment. Competitive multi-agent environments give rise to adversarial
problems a.k.a. games. Easy to represent and agents restricted to small number of actions.
SEARCH – NO ADVERSARY
• Solution is (heuristic) method for finding goal
• Heuristics and CSP techniques can find optimal solution
• Evaluation function: estimate cost from start to goal
• Examples: path planning, scheduling activities
GAMES – ADVERSARY
• Solution is strategy (strategy specifies moves for every possible opponent reply)
• Time limits force an approximate solution
• Evaluation function: evaluate “goodness” of game position
• Examples: chess, checkers, Othello, backgammon, GO
Deterministic: you know where the figures are.
Chance: you know where the figures are, but there is always an element of chance.
MINMAX
• Two players: MAX and MIN
• MAX moves first (uses search tree to determine next move), and they take turns
until the game is over. Winner à reward & loser à penalty.
• Games as search
o Initial state: e.g. board configuration of chess
o Successor function: list of (move, state) pairs specifying legal moves
o Terminal test: is the game finished?
o Utility function: gives numerical value of terminal states
§ win (+1), lose (-1), draw (0) in tic-tac-toe
3
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper gg2000. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.