Week 1
Introduction
The course
Lectures with pen & paper exercises
Lab sessions
Project days
Grade
50% project (report & code)
50% written exam
Machine learning
Supervised learning => learning relationship (f) between input (x) & output (y)
based on training data
Classification
Regression
Methods for classification
Logistic regr
K nearest neigbours
Linear/quadratic discriminant analysis
Decision trees/ random forest
, Support vector machines
Neural networks
Methods for regression
Linear
Decision trees/ random forest
Neural networks
Unsupervised learning => learning structure in training data without output
variable to predict
Clustering
Structure
Methods for clustering
K means
Expectation maximisation
Hierarchical
Methods for dimensionality reduction
Principal component analysis
How to optimally use training/test data?
, Resampling: cross validation, bootstrapping
Statistical learning (chapter 2)
Statistical learning
Estimating f
Income = y = response var
Years of education = x = predictor
Unknown relationship between x & y = f
Random error with mean 0 = E
- Part of y not explained by f
- Black bars
Can also be multivariate
More than 2 input dimensions (x)
- Number of input dimensions = p
- Number of data points = n
Prediction
y = f(x) + E
- Y & f usually unknown
- Estimate f to predict y from known x values ^y = ^f (x)
- F estimated using training data
- Error term E
Error of the model
- Estimated from data set = mean squared error
Reducible & irreducible error
- Reducible error => can be reduced by applying more appropriate
learning technique & models, or by adding more training data
- Irreducible error => cannot be reduced because relevant input is
unmeasured or there is unmeasurable variation
Inference
Again estimate f
- But now: understand how x affects y
Prediction vs inference
- Prediction => estimate to get good prediction
, - Inference => estimate to get understanding
Prediction accuracy vs model interpretability
Linear models => high interpretability & sometimes high accuracy
Highly non-linear models => low interpretability, high accuracy c
Choice depends on prediction or inference
- Prediction more likely non-linear
- Inference more likely linear
Parametric vs non-parametric
Parametric
- Choose functional form of f
- Learn parameters of f from training data using least squares or
different method
😊 easier to estimate set of parameters than to fit arbitrary function
less training data needed
☹ if chosen functional form is too far from truth results can be poor
Non-parametric
- No assumptions about functional form of f
- Estimate of f should fit well
😊 potential good fit, even if input-output relations are complex
☹ requires much more training data, risk of overfitting
Supervised & unsupervised
Supervised learning => based on n training examples with p input
dimensions & 1 output (y), fit y = f(x) + E
Unsupervised learning => n training examples with p input dimensions,
no corresponding outputs (y)
- Find structure in data: clustering or dimensionality reduction
Regression & classification
Regression
- Response is quantitative (e.g. numerical)
Classification
- Response is qualitative/categorical
Accuracy of a model
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper michouweimar. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €3,49. Je zit daarna nergens aan vast.