100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Microeconomics I summary €5,49
In winkelwagen

Samenvatting

Microeconomics I summary

 17 keer bekeken  2 keer verkocht

Dit is een samenvatting van het vak Microeconomics I.

Voorbeeld 4 van de 40  pagina's

  • 14 januari 2024
  • 40
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (5)
avatar-seller
femkehillen04
Lecture 1

What is microeconomics?

 Microeconomics has two areas:
o Analyzing the behavior of individuals and firms
o Explaining market structures and price setting
 Microeconomics uses models based on ‘rationality’
 Models are expressed by mathematical formulas
o Advantage: unambiguous
o Disadvantage: limited, complex
 Model is ‘’locally’’ valid
 Model can only be used for its specific purpose

What is an economic model?

 Model is a simplified representation of real life
 Trade-off between applicability and manageability
 Example 1: firms have the impression that sickness absenteeism of workers is sometimes
longer than necessary
o Sick workers continue to receive salary
o Expensive for firms
o No incentive to start working soon
o At some moment a certificate from doctors confirming the sickness is required
 Model prediction is that requirement of doctor’s certificate reduces the length of sickness
absenteeism
 Swedish experiment:
o Born on even day: doctor certificate on 15 th day (treatment group)
o Born on odd day: doctor certificate on 8 th day (control group)
 Hartman, Hesselius & Johansson (2013)
o Sick workers recover faster if a doctor’s certificate is required earlier
o But the additional costs for doctors to write certificates are higher than the reduced
salary payments to sick workers during their absenteeism
 Sometimes a model is simple logic reasoning
 Often mathematical formulas are used to build the model

Why models?

 Goal of models is to explain or predict the change
 Who uses economic models?
o CPB, ECB, AFM, ING, consultancy firms, ministries

Demand, supply and equilibrium

 Equilibrium  demand = supply
 Supply depends on:
o Production technology
o Costs of inputs
o Market price
 Demand depends on
o Preferences of consumers

, o Income of consumers
o Market price
o Prices of other goods
 Prices cause that markets clear
o Supply > demand  price goes down
o Demand > supply  price goes up

Preferences

 Consumers buy bundle of goods
 Allocating scarce resources: size of the bundle is limited by the budget
 Budget is used to:
o Buy consumer goods
o Save
o Enjoy leisure (labor supply decision)
 Consumers make choice for bundle of goods on rationality
 Maximize utility
 Preference decides ‘amount of’ happiness (utility) a consumer derives from a bundle of
goods
 Preferences differ between consumers
 Assumptions:
o Completeness = consider a bundle A and bundle B, consumer either has preference
bundle A or bundle B or is indifferent. It rules out the ‘I don’t know’.
o Transitivity = If a consumer prefers bundle A over bundle B and bundle B over bundle
C, then consumer preferences bundle A over bundle C
o More is better = if bundle A contains for all goods at least the same amount as
bundle B and for at least one good more, then a consumer prefers bundle A over
bundle B

Indifference curve

 A consumer who has the same preference for two bundles, is indifferent between these to
bundles
 Indifferent curve = collection of all bundles of goods for which the consumer is indifferent
 Economists use utility to describe the valuation of a bundle to a consumer
 All bundles on a indifference curve have the same utility
 Properties of indifference curve
o Downward sloping always
o Indifference curves can never cross
o Further away from the origin implies a higher utility
o Each bundle belongs to an indifference curve

Marginal rate of substitution

 Indifference curve is downward sloping
 So, reducing the amount of good X van often be compensated by increasing the amount of
good Y
 Marginal rate of substitution: extent to which goods can be trated against each other
without affecting utility
o MRS = delta qy / delta qx

,  MRS is the derivative of the indifference curve
 Indifference curves of perfect substitutes (MRS = c)
 Indifferent curves of perfect complements (MRS = 0 or MRS = infinity)  car and gasoline

Lecture 2

Utility

 Preferences are summarized in a utility function
 Gives a numerical value to a bundle of goods
 Utility is an ordinal measure
o Magnitude of utility is not relevant, only the (relative) ranking of bundles is
important
 It is unimportant if utility of first bundle is 100 and second is 1 or first is 51 and second is 50
 The only thing that is important is that the one bundle has a higher utility then the other

 The utility function = U(qx,qy)
 If a consumer prefers a bundle U(qx,qy) over a bundle U(qx’,qy’) then: U(qx,qy) > U(qx’,qy’)
o Qx’ and qy’ = different quantity
 If a consumer is indifferent between bundles qx,qy and qx’,qy’, then: U(qx,qy) = U(qx’,qy’)
 Indifference curves: all bundles (qx,qy) for which U(qx,qy) = U with a bar above
 A utility function must satisfy the assumptions ono preferences
 Completeness: utility function assigns a value to each bundle of goods
 Transitivity: if U(qx,qy) > U(qx’,qy’) and U(qx’,qy’) > U(qx’’,qy’’) than U(qx,qy) > U(qx’’,qy’’)
 More is better: if qx > qx’ and qy > qy’ then U(qx,qy) > U(qx’,qy’)

 Marginal utility describes how much utility increases if the amount of a good in the bundle
increases with one
∂U (qx , q ¯ y)
 Marginal utility (of good X) = Mux = >0
∂ qx
 More is better implies that marginal utility cannot be negative
 q¯y implies that the amount of good Y stays constant

 Marginal rate of substitution
 How many additional units of good Y are required to replace one unit of good Y?
 ∆qy is the change in the quantity of good Y
 Changing the bundle, while keeping utility constant: ∆U = ∆qyMUy + ∆qxMUx = 0
 Then the marginal rate of substitution follows: MRS = − ∆qy/ ∆qx = MUx /MUy
 When MRS is small, only a few additional goods of Y are necessary to replace one unit of
good X, the marginal of good X is low compared to the marginal utility of good Y


Budget

 Limited budget: constraint on the amount of consumption
 Let B be the budget of the consumer for coffee and cookies
 Qx is number of latte macchiato, qy is amount of chocolate chip cookies
 pxqx + pyqy ≤ B
 Opportunity set: All bundles (qx,qy) that can be bought with the budget

, 1 Px
 Budget line: Pxqx + Pyqy = B ⇒ qy = B− qx
Py Py

 Marginal rate of transformation: how much the consumer should sell of good Y to be able to
buy one additional unit of good X within the same budget
 MRT = − ∆qy /∆qx = px / py
 MRT determines the slope of the budget line
 MRT does not change if the budget increases, only the opportunity set expands
 MRT changes if the price of one good changes

Optimal bundle

 Utility maximization within restrictions: pxqx + pyqy ≤ B
 The bundle of goods is optimal if:
o The bundle lies on the budget line: pxqx + pyqy = B
o The marginal rate of substitution equals the marginal rate of transformation:
MRS = Mux / MUy = px / py = MRT
 If the additional utility differs you can trade goods in your bundle to increase utility
 Therefore, MRS = MRT (and it does not matter how you spend an additional euro)

Corner solutions

 This gives the interior solution  does not take into account of the restrictions that qx ≥ 0
and qy ≥ 0
 Possibility of a corner solution, better to only buy one good
 For example, qx = 0 and qy = B / py
 When qx = 0  MRS is not MRT

 Corner solution when indifference curves are relatively ‘flat’
 But also in case of non-convex indifference curves
 If MRS = MRT, then qx ≥ 0 en qy ≥ 0 but solution is not optimal

 Concave indifference curves always give corner solutions
 But they are unlikely
 Consumer has a strong preference for only a homogenous bundle of goods instead of a
differentiated bundle

 Compare outcome of maximization of utility with corner solutions
 The optimal bundle can also be determined using the Lagrange multiplier method:
o L(qx, qy, λ) = U(qx, qy) − λ(pxqx + pyqy − B)
o The Lagrange method finds an optimum if the Lagrange function is convex (when
concave it finds a minimum).
 Determining the optimal bundle
o Determine bundle with MRS = MRT
o Compare utility in corner solutions with utility when MRS = MRT

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper femkehillen04. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd