Natuurkunde Deel 2 Elektriciteit, magnetisme, optica en moderne fysica
Fysica II: Hoofdstuk 31: De Vergelijkingen van Maxwell en Elektromagnetische Golven
C000673A - Universiteit Gent
1ste jaar Biochemie en Biotechnologie, 2de semester
fysica ii hoofdstuk 31 de vergelijkingen van maxwell en elektromagnetische golven
Gekoppeld boek
Titel boek:
Auteur(s):
Uitgave:
ISBN:
Druk:
Meer samenvattingen voor studieboek
Samenvatting H25 Giancoli natuurkunde deel 2, fysica
Samenvatting H24 giancoli natuurkunde deel 2, fysica
samenvatting van H23 (elektriciteit) Giancoli natuurkunde deel 2
Alles voor dit studieboek
(21)
Geschreven voor
Universiteit Gent (UGent)
Biochemie en Biotechnologie
Fysica II
Alle documenten voor dit vak (17)
2
beoordelingen
Door: margaux2209 • 2 jaar geleden
Door: Loseliet • 4 jaar geleden
Verkoper
Volgen
vastgoedstudent123
Ontvangen beoordelingen
Voorbeeld van de inhoud
Hoofdstuk 31: De Vergelijkingen van Maxwell en Elektromagnetische
Golven
Opbouw v/d wet van Ampère (algemene vorm):
- Dat een magnetisch veld wordt opgewekt door een elektrische stroom
wordt gegeven door de wet van Ampère (hoofdstuk 28):
⃗ ∙ 𝑑𝑙 = 𝜇0 𝐼𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 .
∮𝐵
- Stel nu dat het omgekeerde ook waar is: Een veranderend elektrisch veld
wekt een magnetisch veld op. Ter ondersteuning gebruiken we een indirect
argument dat als volgt in elkaar zit. Volgens de wet van Ampère verdelen
we elk willekeurig gekozen pad in korte segmenten 𝑑𝑙 , nemen we het
inwendig product v.h magnetisch veld van elke 𝑑𝑙 met het magnetisch veld
⃗ in dat segment en tellen we al deze producten op (integreren) over het
𝐵
gekozen gesloten pad. Deze som is gelijk aan 𝜇0 maal de totale stroom 𝐼 die
gaat door het oppervlak dat wordt begrensd door het integratiepad v/d
lijnintegraal. Bij het toepassen v/d wet van
Ampère op het veld rond een rechte draad
(hoofstuk 28) stelden we de stroom voor als lopend
door het cirkeloppervlak omsloten door onze
cirkelvormige lus (surface 1). We zouden voor de
wet van Ampère even goed het zakvormige
oppervlak (surface 2) kunnen gebruiken, omdat er dezelfde stroom 𝐼
doorheen loopt.
- Bekijk nu het gesloten, cirkelvormige pad voor de
situatie v/d 2e figuur, waarbij een condensator
wordt ontladen. De wet van Ampère werkt voor
oppervlak 1 (stroom 𝐼 loopt erdoor), maar werkt
niet voor oppervlak 2, omdat er door oppervlak 2
geen stroom loopt. Er is een magnetisch veld rond de draad, dus is het
linkerlid v/d wet van Ampère ongelijk aan nul, toch gaat er geen stroom
doorheen oppervlak 2, dus is het rechterlid gelijk aan nul. We lijken dus
een tegenstrijdigheid te hebben.
- In de figuur is een magnetisch veld aanwezig, echter alleen als de lading
naar of vanaf de condensatorplaten stroomt. De veranderende lading op de
platen betekent dat het elektrisch veld ertussen verandert met de tijd.
Maxwell loste het probleem v/d afwezigheid van stroom door oppervlak 2
op door voor te stellen dat het rechterlid v/d wet van Ampère een extra
term zou moeten bevatten die te maken heeft met het veranderende
elektrisch veld.
- Laten we bekijken wat deze term moet zijn door die te bepalen voor het
veranderend elektrisch veld tussen de condensatorplaten. De lading 𝑄 op
een condensator met capaciteit 𝐶 is 𝑄 = 𝐶𝑉, waarbij 𝑉 het
potentiaalverschil is tussen de platen (hoofdstuk 24).
1
, Bedenk ook dat 𝑉 = 𝐸𝑑, waarbij 𝑑 de (kleine) afstand tussen de platen is
en 𝐸 de (homgene) elektrische veldsterkte ertussen, als we de effecten aan
de rand verwaarlozen (hoofdstuk 23). Ook geldt voor een condensator met
𝜀 𝐴
evenwijdige platen dat 𝐶 = 0𝑑 , waarin 𝐴 het oppervlak van elke plaat is
(hoofdstuk 24). We combineren dit tot:
𝜀0 𝐴
𝑄 = 𝐶𝑉 = ( ) (𝐸𝑑) = 𝜀0 𝐴𝐸.
𝑑
𝑑𝑄
- Als de lading op elke plaat verandert met een tempo 𝑑𝑡 , dan verandert de
elektrische veldsterkte met een evenredig tempo. Door deze uitdrukking
voor 𝑄 te differentiëren, vinden we dat:
𝑑𝑄 𝑑𝐸
= 𝜀0 𝐴 .
𝑑𝑡 𝑑𝑡
𝑑𝑄
- Nu is ook gelijk aan de stroom die in of uit de condensator stroomt:
𝑑𝑡
𝑑𝑄 𝑑𝐸 𝑑Φ𝐸
𝐼= = 𝜀0 𝐴 = 𝜀0 ,
𝑑𝑡 𝑑𝑡 𝑑𝑡
waarin Φ𝐸 = 𝐸𝐴 gelijk is aan de elektrische flux door het oppervlak dat
door het integratiepad wordt begrensd (surface 2).
- Als we de wet van Ampère zowel voor oppervlak 1 als 2 geldig willen
maken, kunnen we schrijven dat:
𝑑Φ𝐸
∮𝐵 ⃗ ∙ 𝑑𝑙 = 𝜇0 𝐼𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 + 𝜇0 𝜀0 .
𝑑𝑡
Opbouw v/d wet van Gauss voor magnetisme:
- Zoals we in hoofdstuk 29 hebben gezien, is voor een magnetisch veld 𝐵
⃗ de
magnetische flux Φ𝐵 door een oppervlak gedefinieerd als:
⃗ ∙ 𝑑𝐴,
Φ𝐵 = ∫ 𝐵
waarbij de integraal genomen wordt over het gehele open of gesloten
oppervlak.
- De magnetische flux door een gesloten oppervlak (d.w.z. een oppervlak dat
een volume geheel omsluit) wordt geschreven als:
⃗ ∙ 𝑑𝐴.
Φ𝐵 = ∮ 𝐵
- In hoofdstuk 22 hebben we gezien dat in het geval v/e elektrisch veld de
elektrische flux Φ𝐸 door een gesloten oppervlak gelijk is aan de totale netto
lading 𝑄𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 die door het oppervlak wordt omsloten, gedeeld door 𝜀0 :
𝑄𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛
∮ 𝐸⃗ ∙ 𝑑𝐴 = .
𝜀0
Deze betrekking is de wet van Gauss voor elektriciteit.
2
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper vastgoedstudent123. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,48. Je zit daarna nergens aan vast.