Kwantitatieve beleidsmethoden
(BOEK 1)
Inhoud
Hoofdstuk 1. Inleiding............................................................................................................................3
Van theorie naar model......................................................................................................................3
Hoofdstuk 2. Het lineair regressiemodel................................................................................................4
Het lineair model................................................................................................................................4
Het enkelvoudig lineair regressiemodel.............................................................................................4
Methode van de kleinste kwadraten..................................................................................................4
Eigenschappen van de kleinste kwadratenschatters..........................................................................5
Assumptie 1....................................................................................................................................6
Assumptie 2....................................................................................................................................6
Assumptie 3....................................................................................................................................6
Stelling 2.1. Gauss-Markov stelling.................................................................................................6
Een schatter voor σ²...........................................................................................................................7
Statistische inferentie betreffende β0 en β1......................................................................................7
Assumptie 4....................................................................................................................................7
De kwaliteit van het enkelvoudig regressiemodel..............................................................................8
Methode 1: Determinatiecoëfficiënt..............................................................................................8
Methode 2: Toetsen van de significantie van het model................................................................8
Voorspellen met het geschatte model................................................................................................9
Intervalvoorspelling........................................................................................................................9
Puntvoorspelling voor.....................................................................................................................9
Causaliteit...........................................................................................................................................9
Hoofdstuk 3. Meervoudige regressie......................................................................................................9
Het meervoudig regressiemodel en de methode van de kleinste kwadraten....................................9
Kleinste kwadratenmethode..........................................................................................................9
Veronderstelling bij het meervoudig regressiemodel.......................................................................10
Assumptie 1..................................................................................................................................10
Assumptie 2 (homoscedasticiteit).................................................................................................10
Assumptie 3 (ongecorreleerde van waarnemingen).....................................................................10
Assumptie 4..................................................................................................................................10
Eigenschappen van de kleinste kwadratenschatter..........................................................................10
1
, Statistische inferentie.......................................................................................................................10
Een schatter voor σ².....................................................................................................................10
Determinatiecoëfficiënt................................................................................................................11
Algemene F-toets.........................................................................................................................11
Hypothesetoets voor individuele parameters..............................................................................11
Hypothesetoets voor meerder parameters..................................................................................11
Voorspellingen..............................................................................................................................12
Multicollineariteit.............................................................................................................................13
Gecorreleerde versus niet-gecorreleerde verklarende variabelen...............................................13
Gevolgen van multicollineariteit...................................................................................................13
Remedies tegen multicollineariteit...............................................................................................13
Modelspecificatie.............................................................................................................................13
Weglaten van verklarende variabelen..........................................................................................13
RESET-test van Ramsey.................................................................................................................13
Opnemen van irrelevante variabelen (uitwerking niet te kennen)...............................................14
Aanpassen functionele vorm van model.......................................................................................14
Modelselectie...................................................................................................................................14
Het toetsen van de veronderstellingen (WC)...................................................................................14
Hoofdstuk 4. Kwalitatieve verklarende variabelen...............................................................................14
Kwalitatieve variabelen met 2 niveaus.............................................................................................14
Kwalitatieve variabelen met meer dan 2 categorieën......................................................................16
Het testen van kwalitatieve effecten (voorbeeld)............................................................................17
De Chow test....................................................................................................................................18
Stuksgewijze lineaire regressie.........................................................................................................18
Hoofdstuk 5. Niet-lineaire modellen....................................................................................................18
Veeltermen en interacties................................................................................................................18
Inverse functies................................................................................................................................18
Stuksgewijze lineaire functies...........................................................................................................18
Logaritmische functies......................................................................................................................18
Vergelijken van de kwaliteit van modellen voor Y en transformaties voor Y....................................19
Hoofdstuk 6. Heteroscedasticiteit........................................................................................................19
Inleiding............................................................................................................................................19
De gewone kleinste kwadratenschatters bij heteroscedasticiteit.....................................................20
De gewogen of veralgemeende kleinste kwadratenmethode..........................................................21
Het opsporen van heteroscedasticiteit.............................................................................................22
Grafische methode.......................................................................................................................22
2
, Statistische methode....................................................................................................................22
Transformaties.................................................................................................................................23
Hoofdstuk 7. Autocorrelatie.................................................................................................................23
Inleiding............................................................................................................................................23
Eerste orde autocorrelatie................................................................................................................24
Veralgemeende kleinste kwadratenschatter....................................................................................25
Vertraagde variabelen......................................................................................................................26
Het opsporen van autocorrelatie van de eerste orden.....................................................................26
Hoofdstuk 9. Logistische regressie.......................................................................................................27
Het lineaire kansmodel.....................................................................................................................27
Het enkelvoudig logit model.............................................................................................................27
Opbouw van het model................................................................................................................27
Schatting van het model...............................................................................................................29
Kwaliteit van het model................................................................................................................29
Classificatie met behulp van logistische modellen............................................................................30
Meervoudige logistische regressiemodellen....................................................................................31
Hoofdstuk 1. Inleiding
Van theorie naar model
Theorie: inzicht relatie tussen variabelen, vb. consumptieniveau (c) wordt beïnvloed door
beschikbaar inkomen (x)
"theoretische"relatie uitdrukkken met wiskundige functie (vertalen): Model: c = f (x)
q = f (p, ps, pc , x)
Algemeen: y = f (x1, x2,..., xk)
- y: respons of afhankelijke variabele
- x1, x2,..., xk: verklarende of onafhankelijke variabelen
Verband tussen y en x1, x2,... positief of negatief
Correlatie: meet hoe sterk 2 kwantitatieve variabelen Y en x een lineair verband vertonen en wat de
richting van dat verband is (positief of negatief)
Of hoe sterk sluiten de punten op een scatterplot aan bij een denkbeeldige rechte
- Tussen -1 < r < 1
- Als r = 0 dan is er geen lineair verband
Zijn theoretische grenzen, bij +1 liggen alle punten op 1 lijn, dit kan niet, er gaan altijd
uitzonderingen zijn op uw regel/theorie
Correlatiecoëfficiënt geeft geen informatie over gevoeligheid van de respons variabele Y t.o.v. x
Wel het geval bij regressie-analyse
- Niet enkel kijken of punten aansluiten bij rechte
- Maar ook rechte kwantificeren (hellingscoëfficiënt kennen correlatiecoëfficiënt kijkt hier
niet naar, hier zie je hoe groot het effect is van x op y)
3
,Hoofdstuk 2. Het lineair regressiemodel
Het lineair model
Kwantitatieve afhankelijke of responsvariabele Y en kwan. onafhankelijke of verklarende variabele x
Gestelde vragen:
- Is er een sterke lineaire relatie tussen beide variabelen?
- Is deze lineaire relatie significant?
- Hoe gevoelig is Y voor veranderingen in x?
- Welke waarde voor Y voorspelt men gegeven een waarde van x?
Bij een lineair model verschijnen de parameters β0, β1, β2,... op een lineaire wijze in f
Voorbeelden:
- Y = β0 + β1x1 + β2x2 + . . . + βkxk + U
- Y = β0 + β1x + U
- Y = β0 + β1lnx + U
Parameters niet in de macht, geen kwadraten
Het enkelvoudig lineair regressiemodel
Voorbeeld. Er is een verband tussen de lengte (x) en het gewicht van een persoon (Y )
Bijhorend lineair model: Y = β0 + β1x + U
- β0: intercept, snijpunt met y-as
- β1: helling van de rechte, effect van x (lengte) op Y (gewicht)
- U: afwijking van de theorie, relatie is niet perfect, door andere invloeden (levensstijl,
genetische invloed)
Onbekende parameters β0 en β1 gaan we schatten, deze schatters noemen we ^β 0 en ^β 1
Steekproef nemen: yˆ = b0 + b1x (= rechte lijn)
Werkelijk in de steekproef: y = b0 + b1x + u
Best mogelijke rechte: alle afwijkingen zo klein mogelijk
Deze afwijkingen zijn oftewel positief of negatief tov deze rechte
(Probleem: gaan elkaar opheffen als we ze optellen)
Kwadrateren (best mogelijk rechte: rechte die de som van de
gekwadrateerde afwijkingen min., methode vd kleinste kwadraten
Methode van de kleinste kwadraten
= methode voor het schatten van de onbekende parameters
Bepalen coëfficiënten van optimale rechte (modelschatting)
U i= y i−^y i=b 0+ b1 x i (werkelijke waarde – voorspelde waarde)
Minimaliseer
Partiële afgeleiden (kettingregel gebruiken):
Normaalvergelijkingen:
n
−2 ∑ ( y i−b 0−b 1 x i )=0
i=1
n n n
∑ yi −∑ b0 −∑ b1 x i=0
i=1 i=1 i=1
n n
∑ yi =n b0 +b 1 ∑ x i
i=1 i=1
4
, n
−2 ∑ x i ( y i−b0−b1 x i )=0
i=1
n n n
∑ x i y i−∑ x i b 0−∑ x i b1 x i=0
i=1 i=1 i=1
n n n
∑ x i y i=b 0 ∑ x i +b1 ∑ x i ²
i=1 i=1 i=1
Oplossing voor b0 en b1:
n n n
n ∑ y i x i−( ∑ y i)( ∑ x i )
i=1 i=1 i=1
b 1= n n
n ∑ x i ²−( ∑ xi ) ²
i=1 i=1
n
( y ¿¿ i− y )
¿ ∑ ( x¿¿ i− x) n
¿¿
i=1
∑ (x¿ ¿i −x)² ¿
i=1
b 0= y−b1 x
Voorbeeld. Modelschatting relatie lengte gewicht
- b0 = −58.23
- b1 = 0.716
- modelschatting: gewicht = -58.23 + 0.716*lengte
rekenvoorbeeld cursus
► b0 = 0.7
► b1 = −0.1
β0 heeft hier geen praktisch nut omdat dit het voorspelde gewicht is als lengte = 0
Als lengte toeneemt met 1 cm, verhoogt het gewicht met 0,716 kg
Eigenschappen van de kleinste
kwadratenschatters
Vóór het experiment/verzamelen steekproefgegevens
- De respons een kansvariabele: Yi
- Afwijking een kansvariabel: Ui
- Kleinste kwadratenschatters
Kwadraatsommen om variaties te meten:
variatie in x-waarden
Variatie in y-waarden
Covariatie in x en y-waarden
Deze kwadraatsommen kunnen we invullen in ^β 1 en ^β 0:
lineaire schatter: ^β 1 en ^β 0 (b0 en b1) zijn lineaire combinaties
van Yi (yi)
[ ]
n n
1 1
E ( β^ 1 ) =E ∑
SS xx i=1
(x i−x) Y i = ∑ ( x −x) E (Y ¿¿ i)¿
SS xx i=1 i
Praktijk vaak slechts één steekproef
5
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper runedeschepper. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €4,49. Je zit daarna nergens aan vast.