100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
WISKUNDE - InterieurA UA 1e jaar - Samenvatting €5,99   In winkelwagen

Samenvatting

WISKUNDE - InterieurA UA 1e jaar - Samenvatting

 14 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

Samenvatting WISKUNDE - Interieurarchitectuur UA 1e jaar - Module 2

Voorbeeld 3 van de 19  pagina's

  • 1 februari 2024
  • 19
  • 2022/2023
  • Samenvatting
avatar-seller
Cursus Wiskunde


1. Vorm en characteristiek
Gewone zijde = grenst aan juist 2 driehoeken
Rand zijde = grenst aan slechts 1 driehoek

Euler characteristiek v oppervlak
X=V–E+F V = aantal hoekpunten E = aantal zijden / ribben F = aantal driehoeken / vlakken

Toon aan dat de Euler characteristiek niet afhangt vh gekozen raster vh
opp
1) Fijner raster opleggen, verder indelen , nieuw hoekpunt toevoegen
2) Hoekpunten, zijden, driehoeken bijgekomen?
3) V +1, E +3, F +2  V-E+F = 1 – 3 + 2 = 0
4) Zelfde uitkomen

Toon aan dat Euler characteristiek zelfde blijft als we raster nemen v
veelhoeken ipv driehoek
1) Verder opdelen in driehoeken n-hoek  n-2
driehoeken
(bv: 6-hoek  6-2 = 4 driehoeken)
2) Hoekpunten, zijden, driehoeken bijgekomen?
3) V +0, E +(n-3), F +(n-3)  V-E+F = 0 – (6-3) + (6-3) =
0
4) Zelfde uitkomen

Kegel Cilinder Möbius-band Torus Sfeer
ELK OPP = OPGEVOUWEN VEELHOEK
Zwarte = randzijden
Rode = aan elkaar plakken
Pijl = welke richting plakken
2−2+ 2−3+ 2−3+ 1−2+ 3−2+
1 veelhoek  F = 1 1 1 1 1 1
E: aanelkaargeplakte = 1 zijde



CROSSCAP


FLES V KLEIN

χ=2−2+1
=1

Gesloten oppervlakten (zonder rand)
Oppervlakte zonder rand, opgevouwen veelhoek waarvan alle zijden 2 aan 2 geplakt w χ = 1 − 2 + 1
=0
Dan krijg je sfeer, torus, of torussen die aan elkaar plakken

Genus g = aantal gaten in opp 2g = 2 – X

,Cursus Wiskunde
CONVEX veelvlak = som binnenhoeken <360°

CONCAAF veelvlak = som binnenhoeken >360°



Stelling v Euler
Als een convex veelvlak V hoeken, E ribben en F zijvlakken h, dan geldt:

X=V–E+F=2 V = hoekpunten E = ribben F = zijvlakken


Convex vv  Platonisch veelvlak als elk zijvlak zelfde veelhoek is (n), en in elk hoekpunt evenveel zijvlakken
samenkomen (r)

n = vorm zijvlakken
r = aantal vlakken die samenkomen in punt



Convex vv  Archimedisch veelvlak als elk zijvlak zelfde veelhoek is, en in elk hoekpunt evenveel zijvlakken v zelfde soort
samenkomen (boven-ondervlak = regelmatige n-hoek)

Hoeveel Platonische en Archimedisch veelvlakken
bestaan er?
 5 platonische veelvlakken
 Elk platonisch veelvlak = Archimedisch
 Prisma’s en anti-prisma’s
(Prisma: hoekpunten boven-onder mooi tegenover elkaar (kan je verbinden met regelmatige vierhoeken)
 anti-prisma (hoekpunten boven-ondervlak gedraaid, driehoeken gebruiken)
 Juist 13 andere oppervlakten

, Cursus Wiskunde


2. Symmetrie en orbifolds
1) Rotatie-symmetrie  rond rotatiecentrum, over rotatie-hoek
2) Spiegeling-symmetrie  tov spiegel-as
3) Translatie / verschuivings- symmetrie
4) Glij spiegeling  spiegeling + translatie

Spiegelassen rotatiecentrum 180° 90° translaties




Gebied verkleinen rotaties orbifold

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper sterrepeeters. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75323 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,99
  • (0)
  Kopen