100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Term 2 Lecture notes EC226 Econometrics Mastering 'Metrics - Score a first too €15,43
In winkelwagen

College aantekeningen

Term 2 Lecture notes EC226 Econometrics Mastering 'Metrics - Score a first too

 18 keer bekeken  0 keer verkocht
  • Vak
  • Instelling
  • Boek

Pass your exams with a first!!! Providing an in-depth and comprehensive review of the EC226: Econometrics course from Warwick Economics. The revision notes were written by a student who scored a solid first in the module and final exams. Revision notes include content from all the weeks from term 2...

[Meer zien]

Voorbeeld 2 van de 12  pagina's

  • 2 maart 2024
  • 12
  • 2023/2024
  • College aantekeningen
  • Jeremy smith
  • Alle colleges
  • Onbekend
avatar-seller
Wat Serial Correlation
Distribution
of Coefficient in
Dynamic Time Series Models .
(vs) I :




Estimation of time sevel serial condation
of form of linear dependence
:
Presence over
Ols model of Yo
some




Recap T, - time
for some series
, zz

The autocorrelation Pictoral representation of which
this lineor
dependency, is
:


Function (ACF)
of C againstj) form of
I plots values
measured in the a correlation between Ez and Exx




Moving
to
T S .




for different 12 .




correlation
model
1) O
zen I Vk
--

cor(zz
(2
Co
that is : cor r za
=
Et , -
n
-


li I

-



O
-
-


+, -




v(zz)V(te -

k
I v(zi) -
y




It Bo B YE1 from lag of f=1 191 ju
-
+ +
Ef aise dependent variable where and l
=
, issues ·
, .




,




(i)
E(Et/yt 1) = 0 =
t(dely y ,
,
. .




+
ye 1 ,
ye
...

y 0
ez ,
2
+ n =
-o as h get
bigger ; fo =
)(z +, 7) :









&
!
strict
enogeneity is
r possible
Consider A&F in P
if
types Models :




4
(V(((y 1) +
=
0 t 1) White Noise
Ptypes of Model

MA ARMA
Autoregresive (AR) AR ;
Wil Cor (Ez , Es (y) = 0 Ets
:
;

roite
/0 04 (MA)
White
proce
(iv) Et 14 + 3)
Honing Average
-
N

large
,




d
enogeneity
las we
4) Autoregrenie Moving average
(ARMA) .




Samlim
* ~
- As
enogeneity
·
strict isn't possible -o
we replace (i) / :
Autocorrelation Function & White Noise Process (vi)
Ii) assumption of temporaneom enogeneity : [(dily , Yo , Ys .
. . .




.y .)
) =0 White Noise Process :



in words -
expectation of er ror

term is unconditional/unrelated on all value
of Y that happened up model :
Ex
=

Ex
-
(E) = 0 ↳
(4 k ,
= 0 to
until the previous va l u e ·




VIEl :
83 EWN(0 04 ,




station see



Straitlas umption o wedevel
vie


if ze E
-
E(zy E(4y) 0 constant
·


= = =
Mear
all

-
came for
↳adchen E(zz) Elke
-
z+ M+ 4 M+
= =




Mean


② v(y)) 5y V(z) = constant
->
+ t nuance
·
= -




③ (yt ytn) Un ((z 2)
>
-
ou
,
=
,
= 0 to
4 *
whet rol voe
previous
.

some




>
-
graph indicates :
if the Mocen in
"shocked" today ,
100 % of the


(W NI shoch remains
today but in a l l
future perod
WEAA
-




-ACF
. ,




DEPENDENCY .
There is to the shoch whatsoever -




no
memory

condition :
Corlyt Yen) Un - 0 =
as h get bigges

,







Lov
we
between
t a ke Gobs
observations
.
must
get smaller
,
the further it on

Each , dissipated
immediately is
- rent food .




creater similar condition to
sampling
a random
.

(1) Find Mat : 1 , N (p V (b , 1)
older 1 Model in which
cr of proces was
determined
by for.
val u e of
-of
,

: He
-



.
process



E AR (1) Model (vi) i
I'll
Hypother's Austing should also not i nv i l l e fitats ,
but the Xtat .




an add assumpt ou
·




the
-(i
ou
v(Ge & Could i e


*
ill
small a re


fol
a


PEz1
ols is bione
coefficien long is
large Et
conditions
of as the +
·
a re as
sanes him .




>
-
for I t to be stationor .




where it in a WN
process an d 10/11 (and have process in
stationary) -




Notes.
p
=

0 - Le derivation in Lecture


Note :
useful for proofs in to know it is a
purely random pocen & mated to all
including
past value of Ez

, continued
.




III
- -




Diagrammatically
-




·

p ,
10 ,
Gro

Diag i to



# Torammatical
goin decay zuo
9 0 20
·


. ·
, ,



f ·

if the proces is shocked today ,
100 % of the short is remembered

today
,
at period I
, of is remembered
,
ther
for every find pl ·
4. + & = complex roots
.

3
for
= 1 2 s
j , , ....,




O
Lautoregrenine
parameter
& o

back
low sucoil you agent shocked
①reces been GENERALIZATION AR(3) :


path Given joule
2 :



E to es.

of the path
.




out


= 47 ,
+
Pret +
-3 +
Et



& o
process

autoregressive parameter/coefficient .

ARP - E =

4, e + -2 +... +
Ptp + -C.N
27




Defining the
lag operator 1 ,
s .
A (z =
E -,
and 1'z ,
=
zej we
in this c a re -y
talked written as :




can write th Model as : VIze =
Vo =
Divi+ UntPatz . . .

&POP Note-Make sure

what each
to understand

of the

letters
V .
=
4 , 80
+
Prk +
&K +... +
PUP-1
Mear




=
=

P(Ez +
Ex
=
12 (l PH) -
= 4
+
=
ze =
I- PLT'Et 82 0, 8 =

.
+
aro +
934 +... +
%000-m


(PL)" &L P2
+
PL+ in which
. . .




Now : =
1 + + case :
...,




024 03 )Et E 94 + En P E 928j2 + Pojp ja Pt
°
+ + =
+ + +
Vi
=
&Vie + . .

>
+ ...
- - .




-




this in a MAIO)

be solved back substitution or in the first part Yule-walker MOVING MALI) MA(L) MALG)
by MODELS
can like AVERAGE ,
:

, ,

EQ
. weighted a r.
of new. random shocks
.
(4) =
0


MA(1) "E+=
G 08 Et
-
this
&
+
,
in case :
v(Et) =




cor(42 4) 0
jf0
=




Auto Regressive (AR2) ; AR(3) ; AR(p) Models Ot(4+ ) + E(at)
,


2 -


(E(7t
=
E(04 + ,
+ Ex) =

,
=
0/


(V(zd) =
Vo
=
(1 + 8462
Ex in
stationary
-
18 ,
+
02/
ARLI -
zz =
P ,
z
+ + $277- +
Et (((zt =zi) ,
=
y
=
062


WiN is to be (4) (zz 2) 0
and the assumed
stationary Lov d
in zt
=
where
Et
=
a
proces process ,




%
E(e) E(zz j) V(ze V(zz j) deine
AY
ht to
yield = /184 44 Lives O
=
equations : So =

f
=
;
=
so and = :
e =
,
-




E
E(z) (1 4, q)t(t)
=
- =
0
joll
V (z) d =
.
=


difl Pek + s Wote : the MA(1) can be written as an
infinite AR frocess to knows as
atibility
i



Ywell
Cor ( +) ,
=
0 .
=

06 +
Put
.




Co(z + K Pik ,
z = =

Pik MA(2) >
-
En
= 0 4 , .,
+
02 & 2
+ Ex
,




((zz ,
7 z- 3)
=

Us
=


Pik +
P28 simlor
yules-walked equation -




Diagrammatically :



Scen
By for
3

Puls the shoch
on

P6 (1) 2
-
extension MA(z) remembers
periods
- =

i
-




.
.
. >
- MA : When shocked remembers
the shock for I period
. MA(4) remembers shorth for q peroch length of M .
Al -




/ +0
3-Wf =
Ivonance .
-C- Piet Pulju joz
.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper joebloggs123. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €15,43. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 56326 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€15,43
  • (0)
In winkelwagen
Toegevoegd