100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
GIMA Module 5 - Summary exam - All subjects €7,49
In winkelwagen

Samenvatting

GIMA Module 5 - Summary exam - All subjects

 16 keer verkocht

Summary about all contents for the exam, including Spatial Analysis, Geodata models, Geodatabases, Python Programming, Spatio-Temporal Modelling, Geodata Dissemination

Voorbeeld 4 van de 43  pagina's

  • 23 november 2018
  • 43
  • 2017/2018
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
nielsvenema
GIMA Module 5 Summary all themes
1.Spatial Analysis
L: Introduction to (Spatial) Regression Models
Spatial analysis aims to:
- Evaluate how entities are spatially distributed
- Determine the underlying spatial processes
- Analyse the relationships between patterns

The focus here is on spatial entities represented as polygons (e.g. municipalities) or points (e.g
houses) » qualitative and quantitative attributes are attached.


Spatial Autocorrelation (SAC)
Grounds on the First Law of Geography: All things are related, but nearby things are more related
than distant things.
➢ Values observed at one location depend on the values of neighbouring observations.

Positive SAC
Similar values are spatially close-by

Negative SAC
Dissimilar values are spatially close-by

No SAC
Spatially random distribution (geography does not matter)


Spatial Heterogeneity (SH)
Characteristics of a population / sample depends on the absolute location
Patterns vary over space, there are no ‘average places’.


Why does space matter?
➢ Why is it important to know how a pattern is distributed?
- The data is not independent
- SAC has serious consequences for non-spatial statistical analysis » it might result in wrong
conclusions.


Exploratory spatial data analysis
Aims to discover spatial patterns

3 kinds of approaches:
Mapping
- E.g. choropleths
Global methods
Local methods


Global statistics
The spatial characteristics of a pattern are summarized globally
➢ One single number represents the pattern » it approximates an ‘average’ value.

, ➢ Spatial variations cannot be detected
Methods:
- Join Count statistic: for nominal data
- Moran`s I: interval / ratio data
- Geary`s C: interval / ratio data
- Autoregressive models

Step 1: definition of the spatial system
Contiguity (nabijheid) :
Rooks contiguity (touches only the 4 line-sharing polygons) & Queens contiguity (touches all point-
sharing polygons)

K-nearest neighbours:
K closest entities are defined as neighbours, this avoids island effects.

Threshold distance:
Entities within a particular distance (circle area) are defined as neighbours.
➢ E.g. points within 100 meters are defined as neighbours.

Interaction:
Spatial closeness results in similarity. I.e. closer entities have greater influence than more distant
ones.
For example: 1 = full interaction; 0 = no interaction.
Common functions are:
- Inverse distance weighting: wij = 1 / dij
- Squared distance weighting: wij = 1 / dij2
o Relative influence drops off more rapidly.

The W matrix (n x n)
Row standardisation:
Spatial weights are rarely used in their binary form, W is often standardised.
In row standardisation, each weight is divided by the sum of its row. So each row sums up to 1.
This allows comparison between parameters.

Step 2: select a statistic
Moran’s I
Moran’s I tests for global spatial autocorrelation:
“Are (dis)similar values in close proximity to each other or are they randomly distributed?”
The range is from + 1 (Positive SAC) to - 1 (Negative SAC). When around 0: no correlation (spatial
randomness).

Permutation approach (to check significance):
Calculate for a high number of maps (e.g. 999 runs) the Moran’s I.
If the observed Moran’s I lies in a tail of the distribution, then this is evidence for a significant value.


Local statistics
When using the global SAC, this provides evidence concerning spatial associations, but no
statements about the ‘where’ are possible.

Local statistics have the following advantages:
- Detection of clusters

, - Output of many parameters
- Visualisation capabilities
- Explore heterogeneity.

The following methods can be used:
- Local Moran’s I
- G* - statistic
- GWR

Local Moran’s I
This is a local disaggregation of the global coefficient.
It determines attribute similarity for each unit in comparison to its neighbourhood.

This enhances the detection of:
- Hot spots: High values surrounded by high values
- Cold spots: Low values surrounded by low values
- Outliers: High values surrounded by low values
Low values surrounded by high values

Moran scatterplot
The Moran scatterplot describes the linear relation of attribute values to its neighbours.




High – high: hotspots » Positive SAC
Low – low: cold spots » Positive SAC
High – low: outliers » Negative SAC
Low – high: outliers » Negative SAC.

Covariance and correlation
Covariance
Measures the association between 2 continuous variables

Pearson product-moment correlation coefficient
Standardised measure of the linear association between 2 variables.

Regression
Regression informs about the form and the nature of a relationship
➢ E.g. how is distance to the core city related to housing prices?

Simple regression:
1 response variable (dependent, metric scale), 1 independent variable (predictor)
➢ E.g. house price = f(floor area)

, Intercept = point at which the line crosses the vertical axis.

Ordinary least squares (OLS) approach
This is a statistical approach to determine the ‘best’ fitting line in a scatterplot.




- Minimizes the squared residuals.
o The black line ^ describes the data as close as possible.

In the equation (see above):
ß’s give insights into the nature of the association

ß0 gives the estimated value of y when x = 0
ß1 says how y varies when x is increased by 1 unit.


Model validation:
After estimating a regression, the following needs to be done:
- Validation of the model quality
- Statistical significance of the estimated parameters
- Fundamental model assumptions
Essential are:
- (adjusted) coefficient of determination (R2)
- T-statistic
- F-statistic
- Akaike Information Criterion (AIC)
- Moran’s I of the regression residuals.


Coefficient of determination (R2)
R2 tests how well a models explains the data.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper nielsvenema. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 65507 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,49  16x  verkocht
  • (0)
In winkelwagen
Toegevoegd