100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
JADS master Social Network Analysis (SNADS) €9,49   In winkelwagen

College aantekeningen

JADS master Social Network Analysis (SNADS)

 14 keer bekeken  2 keer verkocht

Excessive summary of the lectures notes.

Voorbeeld 4 van de 27  pagina's

  • 21 maart 2024
  • 27
  • 2023/2024
  • College aantekeningen
  • Roger and claudia
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
juultjevandervelden
SNADS
Lecture
& Labs

,A graph consists of
Nodes, actors, vertices
Links, ties, edges, relationships, connections




Adjacency Matrix:
• rows and columns represent different nodes
• unweighted
• edges are 0 or 1
• if two nodes are connected, they are said to be adjacent


Edge list
• two-column matrix: sender in first column and receiver in the second column
• In undirected order of the vertices does not matter


Bipartite network
• bimodal network or two-mode network
• two types of nodes, where edges run only between nodes of different types
• incidence matrix (rectangular matrix)
- if n is the number of items or people in the network and g is the number of groups/movies/books/train stations, then the
incidence matrix B is g x n matrix where cell (I,j) is 1 if item j belongs to group I, and 0 otherwise

,Triad closure → when A and B have a connection and A and C have a connection, it is really
likely B and C are going to have a connection

Geodesic → shortest path ( number of edges it goes through )
↳ also called distance
↳ diameter is the longest path


Weighted network → edges are not binary, but have a numeric value ( the number of times a webpage links to another webpage )


Multiplex network → there are multiple kinds of edges possible between nodes
↳ e.g. two people are connected by friendship & coworkership


Degree → measure a node's extroversion, popularity or involvement
Outdegree → number of outgoing edges
Indegree → number of incoming edges
Total degree → total number of neighbours


Closeness → how many steps does it takes to reach all other nodes in the network
↳ sum all the distances from Ito all other vertices
↳ is ill-defined when the network is not fully connected


Stress centrality → measures the amount of stress a vertex has to sustain the network
↳ how many shortest possible routes go through i


Betweenness centrality → Proportion of all shortest paths in the network that pass through i
↳ shows which nodes have information access advantage and are important to the network is efficiency




Centrality → measures how central and individual vertex or edge is within the network
Centralization → measured how centralized the network is as a whole
↳ sum of absolute differences between each centrality and the max centrality (Freeman method)

, You interact more often strongly with who is "near"
Near things are more alike than distant things




y = ρWy + Xβ +
ϵ




Weight matrix
The matrix W captures the social influence process you want to test.
Cell (i, j) captures the weight of the influence that i receives from j.

The weight matrix is usually (but not necessarily) row-normalized so each row adds to 1 exactly.
Mathematically, row or column normalization has the advantages of making the eigenvalues behave nicely, so the likelihood
become nice and smooth.
It also restricts to the interval, making it easy to interpret.


Two views on how people influence each other

Communication Comparison
refers to social influence through the direct contact between Ego compares himself to those alters whom he considers
ego and alter. similar to him in relevant respects, asking himself ‘what
The more frequent and vivid the communication between would that other person do if he were in my shoes?’
ego and alter, the more likely it is that ego will adopt alter’s Ego perceives (or assesses) alter’s behavior and assumes
ideas and beliefs. that behavior to be the ‘correct’ behavior for ‘a-person-like-
Through discussing matters with alter, ego comes to an me’ or for ‘a-person-in-a-position-like-mine
understanding of an issue and adds new information to his
own, which may cause ego to develop similar attitudes and
Operationalising
understandings.
structural equivalence: having precisely the same relations
across all other nodes in the network
Operationalizing
The most straightforward weight matrix is based on the
adjacency matrix: you are influenced by those you are
tied to directly
members of the same component/subgroup
number of two-paths between two people

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper juultjevandervelden. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €9,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€9,49  2x  verkocht
  • (0)
  Kopen