100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Data Science Methods EOR €13,49
In winkelwagen

Samenvatting

Summary Data Science Methods EOR

 59 keer bekeken  1 keer verkocht

Samenvatting van het vak DSM, gegeven in de master van EOR op Tilburg University.

Voorbeeld 4 van de 85  pagina's

  • 2 april 2024
  • 85
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
rickprive611
Tilburg University

QFAS


Summary DSM

Author: Supervisor:
Rick Smeets Boldea, O

April 2, 2024

,Table of Contents
1 Small and Large Order Probabilities 4

2 Unsupervised learning 4
2.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . 4
2.1.1 Finding Principal Components (dimensions) . . . . . . 5
2.1.2 Example: US Arrests Data . . . . . . . . . . . . . . . . 6
2.1.3 Numerical Computation PCA . . . . . . . . . . . . . . 8
2.1.4 NIPALS . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Screeplot PCA . . . . . . . . . . . . . . . . . . . . . . 10

3 Clustering 11
3.1 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Interpreting a Dendrogram . . . . . . . . . . . . . . . . 14
3.2.2 The Hierarchical Clustering Algorithm . . . . . . . . . 15
3.2.3 Choice of Dissimilarity Measure . . . . . . . . . . . . . 17
3.3 Practical Issues in Clustering . . . . . . . . . . . . . . . . . . 17

4 Supervised (statistical) Learning 17
4.1 Why Estimate f ? . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 How To Estimate f ? . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Parametric Methods . . . . . . . . . . . . . . . . . . . 20
4.2.2 Non-Parametric Models . . . . . . . . . . . . . . . . . 21
4.3 Assessing Model Accuracy . . . . . . . . . . . . . . . . . . . . 21
4.3.1 Measuring the Quality of Fit . . . . . . . . . . . . . . . 21
4.3.2 The Bias-Variance Trade-Off . . . . . . . . . . . . . . . 25
4.4 The Classification Setting . . . . . . . . . . . . . . . . . . . . 27
4.4.1 The Bayes Classifier . . . . . . . . . . . . . . . . . . . 28
4.4.2 K-Nearest Neighbours . . . . . . . . . . . . . . . . . . 30

5 Classification 33
5.1 Why Not Linear Regression? . . . . . . . . . . . . . . . . . . . 34
5.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1 The Logistic Model . . . . . . . . . . . . . . . . . . . . 35


1

, 5.2.2 Estimating the Regression Coefficients . . . . . . . . . 36
5.2.3 Multinomial Logistic Regression . . . . . . . . . . . . . 37
5.3 Generative Models for Classification . . . . . . . . . . . . . . . 37
5.3.1 Linear Discriminant Analysis for p = 1 . . . . . . . . . 38
5.3.2 Linear Discriminant Analysis for p > 1 . . . . . . . . . 40
5.3.3 Quadratic Discriminant Analysis . . . . . . . . . . . . 42
5.4 A Comparison of Classification Methods . . . . . . . . . . . . 44

6 Resampling Methods 47
6.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.1 The Validation Set Approach . . . . . . . . . . . . . . 47
6.1.2 Leave-One-Out Cross-Validation . . . . . . . . . . . . . 48
6.1.3 k-Fold Cross-Validation . . . . . . . . . . . . . . . . . 49
6.1.4 Bias-Variance Trade Off for k-Fold Cross-Validation . . 51
6.1.5 Cross-Validation for Classification . . . . . . . . . . . . 51
6.2 The Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Linear Model Selection and Regularization 54
7.1 Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.1 Best Subset Selection . . . . . . . . . . . . . . . . . . . 54
7.1.2 Stepwise Selection . . . . . . . . . . . . . . . . . . . . . 55
7.2 Choosing the Optimal Model . . . . . . . . . . . . . . . . . . . 57
7.2.1 Cp , AIC, BIC and Adjusted R2 . . . . . . . . . . . . . 58
7.2.2 Validation and Cross-Validation . . . . . . . . . . . . . 59
7.3 Shrinkage Methods . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . . 60
7.3.2 The Lasso . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3.3 The Variable Selection Property of the Lasso . . . . . . 64
7.3.4 Comparing the Lasso and Ridge Regression . . . . . . 65
7.3.5 Selecting the Tuning Parameter λ . . . . . . . . . . . . 67
7.4 Dimension Reduction Methods . . . . . . . . . . . . . . . . . . 67
7.4.1 Principal Components Regression . . . . . . . . . . . . 67
7.4.2 Partial Least Squares . . . . . . . . . . . . . . . . . . . 69

8 Considerations in High Dimensions 70




2

, 9 Tree-Based Methods 72
9.1 The Basics of Decision Trees . . . . . . . . . . . . . . . . . . . 72
9.1.1 Regression Trees . . . . . . . . . . . . . . . . . . . . . 72
9.1.2 Prediction via Stratification of the Feature Space . . . 73
9.1.3 Tree Pruning . . . . . . . . . . . . . . . . . . . . . . . 75
9.2 Classification Trees . . . . . . . . . . . . . . . . . . . . . . . . 77
9.2.1 Advantages and Disadvantages of Trees . . . . . . . . . 78
9.3 Bagging, Random Forests, and Boosting . . . . . . . . . . . . 79
9.3.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.2 Out-of-Bag Error Estimation . . . . . . . . . . . . . . 79
9.3.3 Variable Importance Measures . . . . . . . . . . . . . . 81
9.4 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.5 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Double Machine Learning for Treatment and Structural Pa-
rameters 82
10.1 Partially Linear Regression - Double Machine Learning . . . . 82




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper rickprive611. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €13,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€13,49  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd