100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11 €17,16
In winkelwagen

Tentamen (uitwerkingen)

Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11

1 beoordeling
 2 keer verkocht
  • Vak
  • Solution Manual
  • Instelling
  • Solution Manual
  • Boek

Solution Manual For Elementary Differential Equations and Boundary Value Problems, 12th Edition by William E. Boyce, Richard C. DiPrima, Douglas B. Meade Chapter 1-11

Voorbeeld 4 van de 591  pagina's

  • 11 april 2024
  • 591
  • 2023/2024
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Solution Manual
  • Solution Manual

1  beoordeling

review-writer-avatar

Door: josetally • 4 maanden geleden

Excellent document. It contains all the solutions.

reply-writer-avatar

Door: SolutionsStuvia • 4 maanden geleden

Thanks

avatar-seller
CHAPTER 1


Introduction
1.1

1.




For � > 3∕2, the slopes are negative, therefore the solutions are decreasing. For � < 3∕2, the
slopes are positive, hence the solutions are increasing. The equilibrium solution appears to be
�(�) = 3∕2, to which all other solutions converge.

2.




For � > 3∕2, the slopes are positive, therefore the solutions increase. For � < 3∕2, the slopes
are negative, therefore, the solutions decrease. As a result, � diverges from 3∕2 as � → ∞ if
�(0) 3∕2.
3.




For � > −1∕2, the slopes are negative, therefore the solutions decrease. For � < −1∕2, the
slopes are positive, therefore, the solutions increase. As a result, � → −1∕2 as � → ∞.
1

,2 CHAPTER 1 Introduction


4.




For � > −1∕2, the slopes are positive, and hence the solutions increase. For � < −1∕2, the
slopes are negative, and hence the solutions decrease. All solutions diverge away from the
equilibrium solution �(�) = −1∕2.

5. For all solutions to approach the equilibrium solution �(�) = 2∕3, we must have � ′ < 0 for
� > 2∕3, and � ′ > 0 for � < 2∕3. The required rates are satisfied by the differential equation
� ′ = 2 − 3�.

6. For solutions other than �(�) = 2 to diverge from � = 2, �(�) must be an increasing func-
tion for � > 2, and a decreasing function for � < 2. The simplest differential equation whose
solutions satisfy these criteria is � ′ = � − 2.
7.




For � = 0 and � = 4 we have � ′ = 0 and thus � = 0 and � = 4 are equilibrium solutions. For
� > 4, � ′ < 0 so if �(0) > 4 the solution approaches � = 4 from above. If 0 < �(0) < 4, then
� ′ > 0 and the solutions “grow” to � = 4 as � → ∞. For �(0) < 0 we see that � ′ < 0 and the
solutions diverge from 0.

8.




Note that � ′ = 0 for � = 0 and � = 5. The two equilibrium solutions are �(�) = 0 and �(�) = 5.
Based on the direction field, � ′ > 0 for � > 5; thus solutions with initial values greater than
5 diverge from the solution �(�) = 5. For 0 < � < 5, the slopes are negative, and hence solu-
tions with initial values between 0 and 5 all decrease toward the solution �(�) = 0. For
� < 0, the slopes are all positive; thus solutions with initial values less than 0 approach the
solution �(�) = 0.

, 1.1 3


9.




Since � ′ = � 2 , � = 0 is the only equilibrium solution and � ′ > 0 for all �. Thus � → 0 if the
initial value is negative; � diverges from 0 if the initial value is positive.
10.




Observe that � ′ = 0 for � = 0 and � = 2. The two equilibrium solutions are �(�) = 0 and
�(�) = 2. Based on the direction field, � ′ > 0 for � > 2; thus solutions with initial values
greater than 2 diverge from �(�) = 2. For 0 < � < 2, the slopes are also positive, and hence
solutions with initial values between 0 and 2 all increase toward the solution �(�) = 2. For
� < 0, the slopes are all negative; thus solutions with initial values less than 0 diverge from the
solution �(�) = 0.
11. -(�) � ′ = 2 − �.
12. From Figure 1.1.6 we can see that � = 2 is an equilibrium solution and thus (c) and (j) are
the only possible differential equations to consider. Since ��∕�� > 0 for � > 2, and ��∕�� < 0
for � < 2 we conclude that (c) is the correct answer: � ′ = � − 2.
13. -(�) � ′ = −2 − �.
14. -(�) � ′ = 2 + �.
15. From Figure 1.1.9 we can see that � = 0 and � = 3 are equilibrium solutions, so (e) and
(h) are the only possible differential equations. Furthermore, we have ��∕�� < 0 for � > 3 and
for � < 0, and ��∕�� > 0 for 0 < � < 3. This tells us that (h) is the desired differential equation:
� ′ = � (3 − �).
16. -(�) � ′ = � (� − 3).
17. (a) Let �(�) denote the amount of chemical in the pond at time �. The amount � will be
measured in grams and the time � will be measured in hours. The rate at which the chemical
is entering the pond is given by 300 gal/h ⋅ .01 g/gal = 3 g/h. The rate at which the chemical
leaves the pond is given by 300 gal/h ⋅ �∕106 g/gal = (3 × 10−4 )� g/h. Thus the differential
equation is given by ��∕�� = 3 − (3 × 10−4 )�.
(b) The equilibrium solution occurs when �′ = 0, or � = 104 grams. Since �′ > 0 for � < 104
g and �′ < 0 for � > 104 g, all solutions approach the equilibrium solution independent of the
amount present at � = 0.
(c) Let �(�) denote the amount of chemical in the pond at time �. From part (a) the
function �(�) satisfies the differential equation ��∕�� = 3 − (3 × 10−4 )�. Thus in terms of
the concentration �(�) = �(�)∕106 , ��∕�� = (1∕106 )(��∕��) = (1∕106 )(3 − (3 × 10−4 )�) = (3 ×
10−6 ) − (10−6 )(3 × 10−4 )� = (3 × 10−6 ) − (3 × 10−4 )�.

, 4 CHAPTER 1 Introduction


18. The surface area of a spherical raindrop of radius � is given by � = 4��2 . The volume of a
spherical raindrop is given by � = 4��3 ∕3. Therefore, we see that the surface area � = �� 2∕3
for some constant �. If the raindrop evaporates at a rate proportional to its surface area, then
��∕�� = −�� 2∕3 for some � > 0.
19. The difference between the temperature of the object and the ambient temperature
is � − 70 (� in ◦ F). Since the object is cooling when � > 70, and the rate constant is
� = 0.05 min−1 , the governing differential equation for the temperature of the object is
��∕�� = −.05 (� − 70).

20. (a) Let �(�) be the total amount of the drug (in milligrams) in the patient’s body at any
given time � (hr). The drug enters the body at a constant rate of 500 mg/hr. The rate at which
the drug leaves the bloodstream is given by 0.4 �(�). Hence the accumulation rate of the drug
is described by the differential equation ��∕�� = 500 − 0.4 � (mg/hr).

(b)




Based on the direction field, the amount of drug in the bloodstream approaches the equilib-
rium level of 1250 mg (within a few hours).
21. (a) Following the discussion in the text, the differential equation is �(��∕��) =
�� − � � 2 , or equivalently, ��∕�� = � − �� 2 ∕�.

√ a long time, ��∕�� ≈ 0. Hence the object attains a terminal velocity given by
(b) After
�∞ = ��∕� .
2
(c) Using the relation � �∞ = ��, the required drag coefficient is � = 2∕49 kg/s.

(d)




22.




All solutions become asymptotic to the line � = � − 3 as � → ∞.

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper SolutionsStuvia. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €17,16. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68175 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€17,16  2x  verkocht
  • (1)
In winkelwagen
Toegevoegd