A complete summary of all content of the video clips of V.Blazevic for the course Methodology in Marketing and Strategy Research (strategic management) . This summary includes all content of the video clips, examples and figures.
Methodology in Marketing and Strategy Research (MSSR)
2018-2019
Summary clips V.Blazevic
Inhoudsopgave
Methods subject 1 – Factor analysis...................................................................................... 2
1.1 Intro .............................................................................................................................. 2
1.2 Conducting a factor analysis ....................................................................................... 5
1.3 Selecting an Extraction Method .................................................................................. 7
1.4 Determining the Number of Factors and Rotation .................................................. 11
1.5 Interpreting Factors, using factors in other analyses and determining model fit .. 16
Methods subject 2 – AN(C)OVA ........................................................................................... 21
2.1 Introduction ............................................................................................................... 21
2.2 Understanding the logic ............................................................................................ 23
2.3 Research process & application ................................................................................ 25
2.4 N-way ANOVA ............................................................................................................ 29
2.5 Assumptions and Interpretation ............................................................................... 33
Methods subject 3 – Regression analysis ............................................................................ 37
3.1 Introduction ............................................................................................................... 37
3.2 Process ....................................................................................................................... 40
3.3 Assumptions, Estimation and Model Fit ................................................................... 43
3.4 Issues in interpretations ............................................................................................ 47
3.5 Moderating Effects in MRA ....................................................................................... 54
Methods subject 4 – Partial Least Squares.......................................................................... 57
1.1 Introduction Structural Equation Modeling ............................................................. 57
4.2 Process ....................................................................................................................... 61
4.3 Assumptions and requirements ................................................................................ 65
4.4 Assessing measurement model ................................................................................ 67
4.5 Assessing structural model........................................................................................ 71
1
,Methods subject 1 – Factor analysis
1.1 Intro
Purpose
Estimate a model which explains variance/covariance between a set of observed variables
(in a population) by a set of (fewer) unobserved factors & weightings. Important here are:
the observed variables. So, collected data or so... and what you would like to do, is you want
to understand the variance/covariance between this set of observed variables. So how do
they really interrelate with each other. With that you want to understand how unobserved
factors or other dimensions play a role within this dataset of observed variables.
Example
First you collect the data. So, for example we want to know how you perceive your fairness
of grading and how satisfied you as students are. This we plugged in to a dataset. There we
have the rows. In these rows we have each respondent, so each row is one respondent. Here
respondent number 243 and then for each observed variable we have the number that this
person scored. In the columns we do have all the observations from the different items. So,
for each respondent how he or she perceived Grading 3. This makes up your dataset:
Now you are interested in how these six items relate to each other. So, you want to know
for example how together Gra 1, Gra 2 and Gra 3 form the perception of fair grading. And
this you do by:
→ FACTOR ANALYSIS
What is factor analysis?
• Interdependence technique, you are really interested in how these items interrelate
with each other. Not yet interested in prediction or anything.
• Define structure among variables (observed variables in the dataset and then again
find out how they relate to each other).
2
, • Interrelationships among large numbers of variables to identify underlying
dimensions → factors. You do this mainly for two purposes:
Data summarization (you want to summarize data and you want to understand these
higher order dimensions/factors and reduction of the data. You want to reduce your
observations in order to use them in other analysis.
This is a measurement model (figure).
So, you have a construct, noted by the Greek term in the right and you have the underlying
items X1, X2, X3 and so on. These then together form for example the construct X. We are
also interested in the measurement error (on the left) are there any biases which might
influenced how we measured these items. So, with factor analysis you can assess this type of
measurement error.
Furthermore, here below we see the entire measurement model we have four constructs
with different items, and we are especially interested in the areas of the dotted lines where
we assess the measurement for each construct.
3
, Why do we do multi-item measurement at all?
• Increases reliability and validity of measures. And that is what we are interested in,
because we want to interpret and then later on what we found out our survey and
should be based on reliable and valid measures.
• Allows measurement assessment. We can assess:
- Measurement error
- Reliability
- Validity
• You can use that in two forms of measurement models:
- Formative (emerging) & Reflective (latent) → reflective is what you see in marketing
and strategy. There is a construct and the items kind of reflect this kind of construct.
But for the formative you have more items and therefore they emerge as the
construct.
And for these reflective measurement models we use factor analysis. And we want to assess
reliability and validity.
→ The black dots are the data-points in your sample.
Valid = on target
Reliable = clustered together
Reflective measurement models
• Direction of causality is from construct to measure.
• (They usually are) correlated indicators. So, the items correlate with each other and
together these correlations are used in the factor analysis to explain these dimensions.
• Takes measurement error into account at item level.
• Validity of the items is usually tested with → FACTOR ANALYSIS.
4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper studentjey. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.