COS1501 Assignment 1 QUIZ (COMPLETE ANSWERS) 2024 (732357) - DUE 10 May 2024 ;100% TRUSTED workings, explanations and soluti ons
16 keer bekeken 1 keer verkocht
Vak
Theoretical Computer Science I - COS1501
Instelling
University Of South Africa
Boek
Theoretical Computer Science
COS1501 Assignment 1 QUIZ (COMPLETE ANSWERS) 2024 (732357) - DUE 10 May 2024 ;100% TRUSTED workings, explanations and soluti ons. .......... Which one of the following alternatives is FALSE regarding the number sets Z, Z , Z , Q and R? a. Z ⊆ Z b. Z ⊆ Z c. R ⊆ Q d. Z ⊆ R + ≥ ≥ + ≥ + T...
Exam (elaborations) COS1501 Assignment 2 (COMPLETE ANSWERS) 2024 (653506) - 14 June 2024 •	Course •	Theoretical Computer Science I (COS1501) •	Institution •	University Of South Africa (Unisa) ...
Exam (elaborations) COS1501 Assignment 2 (COMPLETE ANSWERS) 2024 (653506) - 14 June 2024 •	Course •	Theoretical Computer Science I (COS1501) •	Institution •	University Of South Africa (Unisa) ...
Exam (elaborations) COS1501 Assignment 2 (COMPLETE ANSWERS) 2024 (653506) - 14 June 2024 •	Course •	Theoretical Computer Science I (COS1501) •	Institution •	University Of South Africa (Unisa) ...
Alles voor dit studieboek
(27)
Geschreven voor
University of South Africa
Theoretical Computer Science I - COS1501
Alle documenten voor dit vak (3)
Verkoper
Volgen
MasterVincent
Ontvangen beoordelingen
Voorbeeld van de inhoud
COS1501 Assignment
1 QUIZ (COMPLETE
ANSWERS) 2024
(732357) - DUE 10 May
2024 ;100% TRUSTED
workings,
explanations and
soluti ons
ADMIN
[COMPANY NAME]
, Which one of the following alternatives is FALSE regarding the number sets Z,
Z , Z , Q and R? a. Z ⊆ Z b. Z ⊆ Z c. R ⊆ Q d. Z ⊆ R + ≥ ≥ + ≥ + The set of all
non-negative integers x less than 16 such that x is an even integer can be
described as the set: (Note: The required set must include as elements all
non-negative integers x such that all the requirements for the set aremet.) a.
{x| x ∈ Z , x < 16, x = 2k for some k ∈ Z} b. {x| x ∈ Z , x < 16, x = 2k for some k
∈ Z } c. {0, 2, 4, 16, 36, 64, 100, 144, 196} d. {0, 2, 4} 2 ≥ 2 ≥ 2 +
Let's break down each part of the question.
1. Regarding the number sets Z, Z , Z , Q, and R:
a. Z ⊆ Z - This statement is true. Z (the set of integers) is a subset of itself.
b. Z ⊆ Z - This statement is also true for the same reason as above. Z is a subset of itself.
c. R ⊆ Q - This statement is false. R (the set of real numbers) is not a subset of Q (the set of
rational numbers). There are real numbers that are not rational, such as irrational numbers like π
and √2.
d. Z ⊆ R - This statement is true. Every integer is also a real number.
So, the FALSE statement is c. R ⊆ Q.
2. The set of all non-negative integers x less than 16 such that x is an even integer can be described
as:
We're looking for even integers less than 16.
a. {x| x ∈ Z , x < 16, x = 2k for some k ∈ Z} - This set correctly describes the condition that x is
an even integer less than 16.
b. {x| x ∈ Z , x < 16, x = 2k for some k ∈ Z } - This set is the same as the previous one but with
an extra space before the closing brace, so it's essentially the same.
c. {0, 2, 4, 16, 36, 64, 100, 144, 196} - This set includes some even numbers greater than 16, so
it's incorrect.
d. {0, 2, 4} - This set contains only the even numbers less than 16, so it's correct.
Therefore, the correct answer is d. {0, 2, 4}.
Question 3 Complete Marked out of 2.00 Question 4 Complete Marked out of
2.00 Question 5 Complete Marked out of 2.00 {x| x ∈ Z, 0 ≤ x < 8} ⋂ {x| x ∈ R,
4 ≤ x < 16} is the set: a. {x| x ∈ R, 4 ≤ x < 8} b. {x| x ∈ Z, 0 ≤ x ≤ 8} c. {x| x ∈ Z,
0 ≤ x ≤16} d. {4, 5, 6, 7} Consider the sets: U = { 1, 2, {1}, {2}, {1, 2} } A = { 1,
2, {1} } B = { {1}, {1, 2} } C = { 2, {1}, {2}} A U B is the set: a. {1, 2, {1}, {1, 2}} b.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper MasterVincent. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,49. Je zit daarna nergens aan vast.