100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
EconometricsAssignment_2_sol_2019 €4,99
In winkelwagen

Antwoorden

EconometricsAssignment_2_sol_2019

 2 keer verkocht

See the package deal for assignments answers! Answers to the second assignment (2019) of the course Econometrics of the EOR program of Tilburg University

Voorbeeld 2 van de 6  pagina's

  • 28 maart 2019
  • 6
  • 2018/2019
  • Antwoorden
  • Onbekend
Alle documenten voor dit vak (6)
avatar-seller
cobbenhagen
ASSIGNMENT 1: Solutions

Theoretical Exercises
Note that in some of the solutions, we did not use the bold notation for matrices and vectors.


Solution Theoretical Exercise 1 (each 5 points)
n n
a) Unbiasedness: Taking the expected value of both sides, E [µ̂] = n+1 E [ȳ] = n+1 µ 6= µ. Hence, µ̂ is
 y1 +y2 +...+yn  1 1
biased. In this solution E [ȳ] = E n = n (E [y1 ] + E [y 2 ] + . . . E [yn ]) = n nm.
n n
Consistency: plim µ̂ = plim n+1 ȳ = plim n+1 plim ȳ = µ. The last equality makes use of the product
n→∞ n→∞ n→∞ n→∞
n
rule of probability limits, and the facts that plim n+1 = plim 1+1 1 = lim 1
1 = 1, and that plim ȳ = µ
n→∞ n→∞ n n→∞ 1+ n n→∞
by the W.L.L.N. if we assume that yi are i.i.d. Hence, µ̂ is consistent.
h Pn i P n2 2 n
b) Unbiasedness: Taking the expected value, E [µ̂] = E n2 i=1 2
y2i = n2 i=1 E [y2i ] = n 2 E [y2i ] = µ.
The estimator is unbiased.
n 1
Pm 1
Pm
Consistency Define m = 2. Then, plim µ̂ = plim m i=1 y2i . By the W.L.L.N, plim m i=1 y2i =
n→∞ n→∞ n→∞
E [y2i ] = µ if we assume that y2i is i.i.d. The estimator is consistent.
0.1
P100 0.9
Pn 0.1 0.9
c) Unbiasedness: E [µ̂] = 100 i=1 E [yi ] + n−100 i=101 E [yi ] = 100 100µ + n−100 (n − 100) µ = µ. The
estimator is unbiased.
0.1
P100 0.9
Pn 0.1
P100
Consistency: plim µ̂ = plim 100 i=1 yi + plim n−100 t=101 yi = 100 i=1 yi + 0.9µ since
n→∞ n→∞ n→∞
the probability limit of a constant is the constant itself and making use of the W.L.L.N and
assuming that y2i is i.i.d. The estimator is inconsistent. An alternative solution is the following.
P100 Pn
plim µ̂ = plim 0.1n 1
100 n
0.9
i=1 yi + plim n−100 t=101 yi . By the product rule of probability limits,
n→∞ n→∞ n→∞
100 n
lim 0.1n 1 1 0.1n
P P
n→∞ 100 plim n i=1 yi + 0.9 plim n−100 t=101 yi = lim 100 µ + 0.9 µ = ∞.
n→∞
n→∞ n→∞


Solution Theoretical Exercise 2 (10 points)
Note: no bold notation used to indicate matrices.

First, consider the following matrix derivate rules. If a and x are column vectors and A is a matrix, according
∂a0 x ∂x0 a ∂x0 Ax ∂x0 Ax
to the denominator layout notation, ∂x = a, ∂x = a, and ∂x = 2 (A + A0 ) x. ∂x = 2Ax if A
is symmetric (see for example exercise c) from week 4) . Arranging the terms of the objective function,
0
S (β) = (y − Xβ) (y − Xβ) = y 0 y − 2y 0 Xβ + β 0 X 0 Xβ. Realising that X 0 X is symmetric and using the matrix
∂S(β)
derivative rules, the first order condition requires that ∂β = −2X 0 y + 2X 0 Xβ = 0. Then, 2X 0 X β̂ = 2X 0 y.
−1
Assuming that the inverse of X 0 X exists, β̂ = (X 0 X) 0
X y. For this minimum to be unique, the second
∂ 2 S(β) ∂ 2 S(β)
order condition requires that ∂2β is positive definite. ∂2β = 2X 0 X. It can be shown that X 0 X is positive
definite if we assume that the explanatory variables are not perfectly collinear so that the columns of X are
linearly independent.




1

, Solution Theoretical Exercise 3 (10 points)
Start with M2 = I − P2 = I − x2 (x02 x2 )−1 x02 . Post-multiply both sides of the equation with x1 to obtain
M2 x1 = x1 − x2 (x02 x2 )−1 x02 x1 . Since x1 and x2 are orthogonal, x02 x1 = 0. Hence, M2 x1 = x1 . In the
regression of y on x1 and x2 , b1 = ((M2 x1 )0 M2 x1 )−1 (M2 x1 )0 y. Since M2 x1 = x1 , b1 = (x01 x1 )−1 x01 y. In the
regression of y on x1 and x2 , b1 = ((M2 x1 )0 M2 x1 )−1 (M2 x1 )0 y gives the effect of x1 on y where the effect of x2
is ‘partialled out’ from x1 because M2 x1 is orthogonal to x2 . However, since we know that x1 is orthogonal to
x2 , we do not need to partial out the effect of x2 from x1 . Hence, the transformation M2 x1 is not necessary.
We do not need to control for x2 while studying the effect of x1 on y because x2 has no influence on x1 .


Solution Theoretical Exercise 4 (5 pts for a), 10 for b) )
a) Code Plot:
rm(list=ls())
set.seed(1)
N_sim = 1000
N_obs = 1000
B_true = rbind(0.2,0.5)
N_par = length(B_true)


Cov_sim = c(0.1,0.9) # defines Covariances we use
B_hat_sim_1 = matrix(NA,nrow=N_sim,ncol=length(Cov_sim))


# install.packages("mvtnorm")
library("mvtnorm") # load package to draw multivariate normal

## Warning: package 'mvtnorm' was built under R version 3.5.2
for (j in 1:length(Cov_sim)) {
VCOV = matrix(c(1,Cov_sim[j],Cov_sim[j],1),nrow=2,ncol=2,byrow=T)
X = rmvnorm(N_obs,mean=c(0,0),sigma=VCOV)
for (i in 1:N_sim) {
y = X%*%B_true + rnorm(N_obs,mean=0,sd=1)
B_hat_sim = solve(t(X)%*%X)%*%t(X)%*%y
B_hat_sim_1[i,j] = B_hat_sim[1]
}
}


plot(density(B_hat_sim_1[,1],bw = 0.03),ylim = c(0,15),
main = "Sampling distributions of the OLS estimator",
xlab = "B_hat", col = "steelblue", lwd = 3)
lines(density(B_hat_sim_1[,2],bw = 0.03),ylim = c(0,15),col = "firebrick",lwd = 3 )
abline(v=B_true[1],col="black",lwd="2")

legend("topleft",c("COV(x1,x2) = 0 ","COV(x1,x2) = 0.9"),lty = 1,


2

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper cobbenhagen. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 69411 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€4,99  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd