100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
ECON0019 €62,28   In winkelwagen

College aantekeningen

ECON0019

 10 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

In depth notes for ECON0019

Voorbeeld 4 van de 40  pagina's

  • 21 mei 2024
  • 40
  • 2021/2022
  • College aantekeningen
  • Dennis kristensen and aureo de paula
  • Alle colleges
  • Onbekend
avatar-seller
Term 1
Week 1
Simple linear regression
Conditional distributions
• E[ay+b]=aE[y]+b
• E[a(x)y+b(x) |x = a(x) E[y|x] + b(x)
• Var (y|x)= E[y²|x]- E[y|x]²
• LIE: E[y]=E[E[y|x]]

Causality, ceteris paribus, and counterfactual reasoning
• If we hold factors other than x that a ect y constant, ie. ceteris paribus, then we can conclude
that x has a causal e ect on y
• Counterfactual reasoning means considering counterfactual outcomes, the outcome that would
have occurred in one state vs the actual outcome

De nitions
y= β₀ + β₁x + u
• So, if ceteris paribus holds Δu=0 and Δy=β₁Δx
• u contains all factors a ecting y other than x

• SLR.1 Linear in parameters, y= β₀ + β₁x + u
• SLR.2 Random sampling, {xᵢ,yᵢ}, i=1,…,n are independently and identically distributed
• SLR.3 xᵢ, i=1,…,n, exhibition variations that SSTₓ= ∑(xᵢ-x̄ )²>0
• SLR.4 Zero conditional mean, E[u|x]=0
• No x conveys any information about u on average due to mean independence E[u|x]=E[u]
• Implies E[u]=0
• E[u]=LIE E[E[u|x]]=SLR.4 E[0]=0
• Implies E[ux]=0
• E[ux]=LIE E[E[ux|x]]=E[xE[u|x]]=SLR.4 E[0x]=0
• SLR.5 Homoscedasticity, Var[u|x]=σ² for all values x
• This means that any unobserved explanatory variables are uncorrelated with x

Deriving OLS
yᵢ=β₀+β₁xᵢ+uᵢ
These methods only require SLR.3 to hold

Method of moments:
Population moments:
(1a)E[u]=E[y-β₀-β₁x]=SLR.4=0
(2a)E[xu]=E[x(y-β₀-β₁x])=SLR.4=0

Sample moments:
(1) n⁻¹ ∑[yᵢ-β̂₀-β̂₁xᵢ]=SLR.4=0
• This gives 1/n [∑yᵢ-∑β̂₀-∑β̂₁xᵢ]= ȳ - β̂₀-β̂₁x̄ = 0
(2) n⁻¹∑[xᵢ(yᵢ-β̂₀-β̂₁xᵢ)]=SLR.4=0
• Substituting in gives β̂₁= n⁻¹∑(yᵢ-ȳ)xᵢ/n⁻¹(xᵢ-x̄ )xᵢ = n⁻¹∑(yᵢ-ȳ)(xᵢ-x̄ )/n⁻¹∑(xᵢ-x̄ )²
• This is because n⁻¹∑(yᵢ-ȳ)x̄ =0 and n⁻¹∑(xᵢ -x̄ )x̄ =0

β̂₁= n⁻¹∑(yᵢ-ȳ)(xᵢ-x̄ )/n⁻¹∑(xᵢ-x̄ )² = ρ^xy(σ̂ y/ σ̂ x)
• ρ^xy= cov(x,y)/σ̂ yσ̂ x = (n-1)⁻¹∑(yᵢ-ȳ)(xᵢ-x̄ ) sample correlation between xᵢ, yᵢ
• σ̂ = (n-1)⁻¹ ∑(xᵢ-x̄ )² = sample standard deviations




fi ff ff ff

,Outcome:
Predicted/ tted values: ᵢ=β̂₀+β̂₁xᵢ, i=1,..,n
OLS regression line: =β̂₀+β̂₁xᵢ
Residuals: ᵢ=yᵢ- ᵢ ie. the di erence between the actual yᵢ and its tted value

Sum of squared residuals:
Under this method we seek to minimise ∑( ᵢ²) = ∑(yᵢ-β̂₀-β̂₁xᵢ)²
This yields FOC with respect to :
β̂₀: 0=-2 ∑(yᵢ-β̂₀-β̂₁xᵢ)
β̂₁: 0=-2 ∑(yᵢ-β̂₀-β̂₁xᵢ)xᵢ


Unbiasedness
OLS is unbiased under SLR.1-4

β̂₁= (a) ∑yᵢ(xᵢ-x̄ )/∑(xᵢ-x̄ )² = (b) ∑yᵢ(xᵢ-x̄ )/SSTx
(a) As ∑(xᵢ -x̄ )ȳ=0
(b) SSTx= ∑(xᵢ -x̄ )²
= SLR.1 ∑(β₀+β₁xᵢ+uᵢ)(xᵢ-x̄ )/SSTx

Working with the numerator:
∑(β₀+β₁xᵢ+uᵢ)(xᵢ-x̄ ) = β₀∑(xᵢ-x̄ ) + β₁∑(xᵢ-x̄ )xᵢ + ∑(xᵢ-x̄ )uᵢ = 0 + β₁∑(xᵢ-x̄ )xᵢ + ∑(xᵢ-x̄ )uᵢ = β₁SSTx +∑(xᵢ-x̄ )uᵢ
As ∑(xᵢ-x̄ )=0, β₀∑(xᵢ-x̄ )=0
And ∑(xᵢ-x̄ )xᵢ = ∑(xᵢ-x̄ )²

Overall:
β̂₁=β₁ +∑(xᵢ-x̄ )uᵢ/SSTx
∑(xᵢ-x̄ )uᵢ/SSTx= sampling error, the coe cient of regressing uᵢ on xᵢ
=β₁ +∑wᵢuᵢ
wᵢ= (xᵢ-x̄ )/SSTx

Conditional expectation:
E[β̂₁|X]=E[β₁ +∑wᵢuᵢ|X] = β₁ + ∑E[wᵢuᵢ|X] = β₁ + ∑wᵢE[uᵢ|X] = β₁
E[wᵢuᵢ|X]=wᵢE[uᵢ|X]=0 as E[u|X]=SLR.2E[u|x]=SLR.40, so wᵢ depends on X alone

LIE:
E[β̂₁]=E[E[β̂₁|X]]= E[β₁]=β₁


Variance of estimators
Using:
β̂₁=β₁ +∑wᵢuᵢ
That β₁ is constant so does not a ect Var(β̂₁|X)
Cov(uᵢ,uj|X)=SLR.2 and 4E[uᵢuj|xᵢ,xⱼ]=0
Var(uᵢ,|X)=SLR.2 and 5Var[uᵢ|xᵢ]= σ²

Var(β̂₁|X)=Var(β₁ +∑wᵢuᵢ|X)= ∑Var(wᵢuᵢ|X)= ∑wᵢ²Var(uᵢ|X) = ∑wᵢ²σ² = σ²∑wᵢ²
∑wᵢ²= SSTₓ/SSTₓ² =1/SSTₓ
Var(β̂₁)=σ²/SSTₓ

Variance of u
σ²= E[u²]
σ̂ ²= n⁻¹ ∑uᵢ²
As uᵢ² is unobservable we use n⁻¹ ∑uᵢ²= 1/(n-2) SSR
Standard error(β̂₁)= σ̂ /√SSTx




fi
û ŷ ŷ ŷ ff ff ffi û fi

, Variance of
Var = Var (β̂₀+β̂₁y)=Var(u)²+β̂₁²Var(Y)

Goodness of t
SST=SS= ∑(yᵢ-ȳ)² = total variation in y
SSE= ∑( ᵢ-ȳ)² = variation in y explained by x
SSR= ∑ ᵢ² = unexplained variation in y
SST=SSE+SSR

R²= SSE/SST= 1-SSR/SST = fraction of sample variation in y that is explained by x
Or, = SST total/ SST xᵢ
A larger R shows a better t of OLS line
Note- (n-1)⁻¹ SST= σ ²^y
Note- causality is about whether explanatory variables ⫫u, which R² says nothing about, it only
relates to the t of the model

Interpretation of coe cients




ŷ ûŷ fi ŷ fi fi ffi

, Week 2
Multiple linear regression
De nitions
ᵢ=β̂₀+β̂₁xᵢ₁+β̂₂xᵢ₂
yᵢ= β̂₀+β̂₁xᵢ₁+β̂₂xᵢ₂ + ᵢ
• β^s measure the ceteris-paribus change in y given a one unit change in xᵢ
• This interpretation is only valid if MLR.4 holds

Gauss-Markov assumptions:
• MLR.1 Linear in parameters
• MLR.2 Random sample
• MLR.3 No perfect collinearity xⱼ≠x and there is no exact linear relationship among any xⱼ in the
population
• ie. none of the explanatory variables are constant, and there are no exact linear relationships
among ⫫ variables
• MLR.4 Mean independence, E[u|x₁, x₂..xk]=0
• ie. other factors a ecting y are not related on average to x₁ and x₂
• If this holds then explanatory variables are exogenous
• This implies E[u]=0 and E[xⱼu]=0
• MLR.5 Homescedasticity, the variance of u is constant and ⫫x, ie. E[u² |x₁, x₂..xk]= σ²

• MLR.6 Normality, the population error u is ⫫ of X and normally distributed u~N(0, σ²)
• This necessarily assumes MLR.4 and 5 so is a very strong assumption
• The argument of it is the CLT, however its key weakness is that it assumes that all
unobservable factors a ect y in a separate, additive way

Deriving OLS
Sum of squared residuals:
These are found by solving min. SSR=∑(yᵢ-β₀-β₁xᵢ-β₂x₂)²
This yields:




Partialling-out method:
1) Estimate an SLR of x₁ on x₂
xᵢ1= α0+α₁xᵢ2+ri1
And us this to compute the residual
ri1^=xᵢ1-α0^-α₁^xᵢ2
This partials out the variation of xᵢ1 explained by xᵢ2
Properties of ri1^:
• ∑ri1^=0
• ∑ ri1^xᵢ2=0
• ∑ ri1^xᵢ1=∑ri1^²

2) Regress yᵢ on ri1^ and a constant
yᵢ= θ+ β₁ri1^+vi
Giving β̂₁= ∑ri1^yᵢ/ ∑ri1^²






fi ff û ff

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper zctpfru. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €62,28. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75759 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€62,28
  • (0)
  Kopen