100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Text Retrieval & Mining Summary €8,96
In winkelwagen

Samenvatting

Text Retrieval & Mining Summary

 8 keer bekeken  0 keer verkocht

This comprehensive handwritten summary on Text Retrieval and Mining covers essential concepts from both lectures and tutorials. Key topics include Bag-of-Words models, TF-IDF, text processing techniques, POS tagging, constituency parsing, named entity recognition, and entity linking. It also explor...

[Meer zien]

Voorbeeld 3 van de 19  pagina's

  • 1 juni 2024
  • 19
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
lucia2001
Text Retrieval & Mining
Week 1: Bag of Words
Bag-of-Words is a family of text representations, where text vectors are built by
observing and counting the words that appear in a text.

We study 2 types of BoW vectors:

 Raw Count: actually count the number of occurrences of each word in a text
 TF-IDF: adjust the raw count to favour words that appear a lot in a few
documents, as opposed to those who appear a lot in all documents

Definitions
Document and Corpus:

• Document is the smallest unit of text of your use case

• Corpus is your collection of documents

• Use case: think of the typical question you are looking the answer to

• Query: the text you will use to search in your corpus

Vocabulary (or Dictionary): all unique terms appearing in a corpus, with size V := the
number of unique word

Token: a unit of text e.g. word, punctuation

Corpus Frequency: the number of times a word appears of all texts

Term Frequency (in a document): the number of times a word appears in ONE
document

Document Frequency: the number of documents (texts) a word appears in

Term: a single word, a lemma or stem of a word, an N – gram

Tokenizer: a program that takes in a text and splits it into smaller units. Once a text is
tokenized into sentences, you can tokenize sentences into words.

Examples of Python Tokenizers:

• NLTK: sentence & word tokenizer
• SpaCy: sentence & word tokenizer

,Bag of Words
For each document (text):

• Create a vector of dimension V
• Token count in document given per token, total number of tokens = V (the
number of unique words/tokens in the corpus)
• Only show tokens with count > 0

Example:

Sentence 1: “the cat sat on the hat”

Sentence 2: “the dog ate the cat and the hat”

Vocabulary: [and, ate, cat, dog, hat, on, sat, the] (8 unique words)

BoW 1: [0, 0, 1, 0, 1, 1, 1, 2]

BoW 2: [1, 1, 1, 1, 1, 0, 0, 3]

TF-IDF
 TF – Term Frequency
 IDF – inverse of document frequency (DF)

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑒𝑟𝑚, 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑐𝑜𝑟𝑝𝑢𝑠) = 𝑇𝐹 ⋅ 𝐼𝐷𝐹

Looking at the specificity of the word

High value: a word that appears in the document but not a lot in overall corpus

Low value: a word that appears in the document, but also in many others in the corpus

Text Processing
• Stopping: removing stopwords
o Stopwords: a set of commonly used words in a language but carry very
little useful information e.g. personal pronouns, definite & indefinite
articles
o Removed based on a pre-established lists
• Filter by Token Pattern
o Accept only words that correspond to a regular expression pattern.
• Filter by Frequency
o Retain only the top N tokens, based on the number of times they appear
in the complete corpus.
o Use the max_features argument of the vectorizer.
• Filter by Document Frequency
o Two corner cases to consider:


2

, ▪a word appears in nearly all documents: does not participate
actively to make a difference between documents
▪ a word appears only in 1 or 2 documents: It is likely a typo, or a
one-off e.g. Review by John, Jane’s opinion
o Use the min_df and max_df arguments:
▪ min_df = 3 words that appear in more than 3 documents will be
in the vocabulary
▪ min_df = 0.1 words that appear in more than 10% of the
documents will be in the vocabulary

Example

from nltk.corpus import stopwords
stops = stopwords.words('english')
count = CountVectorizer(
stop_words=stops,
token_pattern=r'[a-z]+\w*',
max_features=50000,
min_df=5,
max_df=0.8
)


• Stemming: removing plurals, conjugation
o ‘cats’  ‘cat’, ‘making’  ‘mak’
o Stem  Word
o Stemmers: Porter, Snowball
• Lemmatizing: like stemming, but to a word
o ‘cats’  ‘cat’, ‘making’  ‘make’
o Lemma = Word
o Slower than stemming
o Lemmatizers: WordNet, SpaCy
• N – Grams: groups of N consecutive words in the text
o Importance: Bag of Words vectors ignore word order in a sentence. But it
makes sense that some information is communicated through some
words being side-by-side rather than these words being in the sentence. It
carries more information to know that new york is in a sentence, opposed
to knowing that both new and york are in the sentence, without knowing
that they are side by side. Similarity = Cosine similarity of BoW. It justifies
having a dimension of the BoW vectors that encodes the facts that some
words are side-by-side.
o 2 – grams: ‘New York’, ‘Greta Thunberg’
o 3 – grams: ‘New York City’, ‘Limited Liability Corporation’




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lucia2001. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,96. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 51036 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,96
  • (0)
In winkelwagen
Toegevoegd