100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Statistical Inference Summary

Beoordeling
-
Verkocht
-
Pagina's
24
Geüpload op
08-06-2024
Geschreven in
2023/2024

Overview on: - Score Statistics, Maximum Likelihood Estimation (MLE), Fisher Information - Sufficiency and Completeness with Neyman's Factorisation Theorem and Exponential Family - Parameter Estimation: Desirable Properties of Estimators, Method of Moments, MLE and its properties - Cramer-Rao Lower Bound (CRLB) and Minimum Variance Unbiased Estimator (MVUE) with Rao-Blackwell Theorem and Lehmann-Scheffe Theorem - Hypothesis Testing: Types of Error, Neyman-Pearson Lemma, Uniformly Most Powerful Test (UMP), Likelihood Ratio Test (LRT), Wilk's Theorem, Confidence Set, Slutsky's Lemma - The Delta-Method for Univariate and Multivariate Case - Bayesian Statistics: Defining Prior and Posterior Distribution, Non-informative Priors, Conjugate Priors, Bayesian Credible Region (BCR), Higher Posterior Density Region (HPDR), Asymptotic Properties, Hypothesis Testing, Predictive Inference - Bayesian Perspective on Categorical Data: Bernoulli Distribution, Multinomial Distribution, Dirichlet Distribution, Contingency Tables - Bayesian Perspective on Normal Data: Bias-Variance Decomposition, Prior Distribution in three cases, Predictive Inference, Inverse Gamma Distribution, Normal Inverse Gamma Distribution - Markov Chain Monte Carlo: Metropolis-Hastings Algorithm, Gibbs Sampler

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
8 juni 2024
Aantal pagina's
24
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

we want to infor the parameters ! In this case ,
we are parametric :
models


Chapter 1 :
a) Likelihood are functions of an unknown parameter .
O


110(U) = Px(NIO) < for a
single case


IID obs , due to independence

(1014) = Px(ip)
,
roan

↳ can
use (101) =
log((10ln)) .


Why ? log transformation

log is an
increasing
is one-to-one
,

function
, >N




Why MLE ? Likelihood
says how likely a value of the parameter is
given the data


to inter from the data :
maximise the likelihood

↳ find of the the data
mostly likely value parameter given .




b) Score Statistic , VIX

vix)


0 ETu(x)]
=
l'10m)

0
=
vologPx(n10) - derivative of
log-likelihood !
Fisher information :↑210) ; distribution changes
·
quickly
=
when
>
-
② var(v(x)) = -
Ele"(Olns] =
210) O departs from 00 ; Oo
estimate well

&
210) =
nicd


c) Sufficiency :




Def :
A partition A of sample space - is called sufficient for O if for all AjzA ,
Px/MO , MEAj)

is independent of 0
.


sufficient stat of without .
0
>
knowing a we can find the probablity an event the need to know
-

,



>
-
E at least I sufficient partition ,
ie.
knowing all the n Idatal outcome




↳ minimal Sufficient

Def If sufficient partition A sufficient paration B set
:
is
a such that
given any other , any
element of B is contained in a set element of A then A is said to be minimal sufficient
.
,




>
If T isAncient
for O and Amplete then T is minimal sufficient (Bahadur Incorem (
-
.


,

, TO FIND SUFFICIENT STATISTIC !!

① Meyman's Factorisation Theorem to this !
- My show


A statistic T is sufficient for 0 Px(u10) =
g(0 , T(x)) n(X) ·




② Exponential Family

If X, Xn are IID from a dist of the
exp family


·
·

,
.
...




Px(n10) =
expLACOBIn) + <10) + D(u)} =
try to show this

lif you start with I obe,
Then T = ZBIXi) is sufficient for 0 to because the [BIxi)
state
.



need
clearly
comes from likelihood :
TTPx (n/0)

from def .




>
-
⑤ T is sufficient for O If

(i) for all n and a such that TIu) = a
,

Px(n10 , T(n) =
a) is independent of .
0


(ii) for all 2 and I',


T(u) E PxIMIO) is of O
=
T(u'l
independent
↑x (n'10)


AND T is minimal sufficient if(you show the other direction ,
is ,
E)

Px(n(0) => T() =
TIu'l

↑ x In '10)




d) completeness

family [PX (410) 083

&
Def :
A :
of distributions on - is called complete

if E[hix)] = 0 for all 00 >
- P(nIX) =
010) = 1 for all .
OE h(X) is a zero function


any statistic n(x)
for such that the above expectation makes sense .


>
- A statistic T is said to be
complete if its
family of distributions &P + CtIO) 08] :
is complete



① Exponential
family

Suppose (X , Xn)
X is IID sample from the probability model
=
..., an


Px(n(0) =
expCAIOBIn) + col + DinI] ,
Do


and let T = [B(Xi) denote the corresponding sufficient statistic.


If & contains an open interval ,
then T is .
complete
↓ (R 1 - 0 , 3)
Eg :
,

space of O

, *
completeness of X =
completeness of the
family of distributions of .
X




Chapter 2 :
Goal :
estimate gloy ,
a function of 0
.


Setting : Let (x) be our estimate of g(0) when we observe X =
.
a



An estimator is a function of the r v
.
.
XI, ...,
Xn
.
-



L 1) Estimator not
should take values outside the parameter space .




I
2) Unbiasedness


E[(x)) =
g(0) +
bg(0)

want bg10) = 0 g(x)] =
g(0) VOzO


desirable 3) small volatility
of Squared Error IMSE) > 0
properties mean -




estimators Def :
McE =
ESigIX)-glOT"] =...



=
var((x)) + (b(0))
4)
Consistency
g(x) +
g(0)asn + 0
,

it .
for every 320 , PlIIX)-gl01K) < 10) + 0 as n+



>
-

E(g(X)] + g(0) and var(g(x)) + 0 as n + & = g(X) is consistent for glo)

construct estimators :




a) method of moments


for the r-th moment, E(x] + x
>
n+ 0
-
,




Exr] = Xi [ law of
large numbers]

[theoretical] =
[data]
Exi
Eg
: Eix] =
N
€8,74
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
nghueyern

Maak kennis met de verkoper

Seller avatar
nghueyern University of Nottingham Malaysia Campus
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen