Overview on:
- Score Statistics, Maximum Likelihood Estimation (MLE), Fisher Information
- Sufficiency and Completeness with Neyman's Factorisation Theorem and Exponential Family
- Parameter Estimation: Desirable Properties of Estimators, Method of Moments, MLE and its properties
- Cramer-Rao L...
we want to infor the parameters ! In this case ,
we are parametric :
models
Chapter 1 :
a) Likelihood are functions of an unknown parameter .
O
110(U) = Px(NIO) < for a
single case
IID obs , due to independence
(1014) = Px(ip)
,
roan
↳ can
use (101) =
log((10ln)) .
Why ? log transformation
log is an
increasing
is one-to-one
,
function
, >N
Why MLE ? Likelihood
says how likely a value of the parameter is
given the data
to inter from the data :
maximise the likelihood
↳ find of the the data
mostly likely value parameter given .
b) Score Statistic , VIX
vix)
0 ETu(x)]
=
l'10m)
0
=
vologPx(n10) - derivative of
log-likelihood !
Fisher information :↑210) ; distribution changes
·
quickly
=
when
>
-
② var(v(x)) = -
Ele"(Olns] =
210) O departs from 00 ; Oo
estimate well
&
210) =
nicd
c) Sufficiency :
Def :
A partition A of sample space - is called sufficient for O if for all AjzA ,
Px/MO , MEAj)
is independent of 0
.
sufficient stat of without .
0
>
knowing a we can find the probablity an event the need to know
-
,
>
-
E at least I sufficient partition ,
ie.
knowing all the n Idatal outcome
↳ minimal Sufficient
Def If sufficient partition A sufficient paration B set
:
is
a such that
given any other , any
element of B is contained in a set element of A then A is said to be minimal sufficient
.
,
>
If T isAncient
for O and Amplete then T is minimal sufficient (Bahadur Incorem (
-
.
,
, TO FIND SUFFICIENT STATISTIC !!
① Meyman's Factorisation Theorem to this !
- My show
A statistic T is sufficient for 0 Px(u10) =
g(0 , T(x)) n(X) ·
② Exponential Family
If X, Xn are IID from a dist of the
exp family
·
·
,
.
...
Px(n10) =
expLACOBIn) + <10) + D(u)} =
try to show this
lif you start with I obe,
Then T = ZBIXi) is sufficient for 0 to because the [BIxi)
state
.
need
clearly
comes from likelihood :
TTPx (n/0)
from def .
>
-
⑤ T is sufficient for O If
(i) for all n and a such that TIu) = a
,
Px(n10 , T(n) =
a) is independent of .
0
(ii) for all 2 and I',
T(u) E PxIMIO) is of O
=
T(u'l
independent
↑x (n'10)
AND T is minimal sufficient if(you show the other direction ,
is ,
E)
Px(n(0) => T() =
TIu'l
↑ x In '10)
d) completeness
family [PX (410) 083
&
Def :
A :
of distributions on - is called complete
if E[hix)] = 0 for all 00 >
- P(nIX) =
010) = 1 for all .
OE h(X) is a zero function
any statistic n(x)
for such that the above expectation makes sense .
>
- A statistic T is said to be
complete if its
family of distributions &P + CtIO) 08] :
is complete
① Exponential
family
Suppose (X , Xn)
X is IID sample from the probability model
=
..., an
Px(n(0) =
expCAIOBIn) + col + DinI] ,
Do
and let T = [B(Xi) denote the corresponding sufficient statistic.
If & contains an open interval ,
then T is .
complete
↓ (R 1 - 0 , 3)
Eg :
,
space of O
, *
completeness of X =
completeness of the
family of distributions of .
X
Chapter 2 :
Goal :
estimate gloy ,
a function of 0
.
Setting : Let (x) be our estimate of g(0) when we observe X =
.
a
An estimator is a function of the r v
.
.
XI, ...,
Xn
.
-
L 1) Estimator not
should take values outside the parameter space .
I
2) Unbiasedness
E[(x)) =
g(0) +
bg(0)
want bg10) = 0 g(x)] =
g(0) VOzO
desirable 3) small volatility
of Squared Error IMSE) > 0
properties mean -
it .
for every 320 , PlIIX)-gl01K) < 10) + 0 as n+
>
-
E(g(X)] + g(0) and var(g(x)) + 0 as n + & = g(X) is consistent for glo)
construct estimators :
a) method of moments
for the r-th moment, E(x] + x
>
n+ 0
-
,
Exr] = Xi [ law of
large numbers]
[theoretical] =
[data]
Exi
Eg
: Eix] =
N
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper nghueyern. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €9,80. Je zit daarna nergens aan vast.