100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Samenvatting Statica en sterkteleer: formules en oplossingsmethodes verschillende soorten oefeningen €4,56
In winkelwagen

Samenvatting

Samenvatting Statica en sterkteleer: formules en oplossingsmethodes verschillende soorten oefeningen

 1 keer verkocht
  • Vak
  • Instelling

Dit document bevat de meeste formules die gekend moeten zijn, ook verschillende oplossingsstrategieën en uitleg om bepaalde oefeningen in verband met statica en sterkteleer op te lossen.

Voorbeeld 2 van de 5  pagina's

  • 12 juni 2024
  • 5
  • 2023/2024
  • Samenvatting
avatar-seller
Formules




Statica:
1. Som van krachten in evenwicht: ΣF = 0
2. Som van momenten in evenwicht (rond een punt): ΣM = 0
3. Evenwicht in de x-richting: ΣFx = 0
4. Evenwicht in de y-richting: ΣFy = 0
5. Evenwicht in de z-richting (voor driedimensionale problemen): ΣFz = 0
6. Moment van een kracht rond een punt: M = F * d
7. Moment van een kracht rond een as (bijvoorbeeld bij een momentarm): M = F * r

Sterkteleer:
1. Normaalspanning (axiale spanning) in een staaf: σ = F / A
2. Normaalspanning op een bepaald punt op een balk onder buiging: σ = (M * y) / I
3. Schuifspanning in een staaf: τ = F / A
4. Buigspanning in een balk onder buiging: σ = (M * c) / S
5. Modulus van elasticiteit (ook wel Young's modulus genoemd): E = σ / ε
waarbij: E = Modulus van elasticiteit (in pascal, Pa) σ = Normaalspanning (in pascal, Pa) ε =
Rek of vervorming (eenheidloos)
6. Traagheidsmoment: I = ∫(y^2 * dA)
waarbij: I = Traagheidsmoment (in vierkante meter, m^4) y = Afstand van het element dA tot
de neutrale as (in meter, m) dA = Infinitesimaal element van dwarsdoorsnedeoppervlak (in
vierkante meter, m^2)

, !# %
" $%&,(%)
- τ=$ ≤ &'()(*+'(,-./0123 (schuifspanning berekenen van een pin, deze formule ook
!"#
gebruiken voor de diameter van een pin te bepalen (Apin omvormen tot π*r2))
4∙3 7
- τ= 𝑚𝑒𝑡 𝐼 = ∙ 𝑟 8 (met ‘τ’ de schuifspanning, ‘T’ de torsie, ‘r’ de straal en ‘I’
! "
het polair traagheidsmoment)

- 𝐼! = 𝐼!,#$%&'()%*'& + (𝑦 ∗ − 𝑦#$%&'()%*'& ), ∙ 𝐴 (Formule van Steiner)
∑!"#
$ (/! ∙ 2! )
- 𝑍𝑃 = ∑!"#
(ZP = het zwaartepunt van een hele structuur bestaande uit
$ (/! )
kleinere structuren)
4∙2
- 𝜎= (met M het buigmoment, y de afstand tot de neutrale vezel (neutrale
5
vezel ligt op hoogte van het zwaartepunt) en I het traagheidsmoment)
è Als we onder de x-as liggen bij een momenten diagram dan staat het
gebied boven de neutrale vezel (en dus boven het zwaartepunt) onder
trek (T) en het gebied onder de neutrale vezel staat dan in compressie
(C).
4
- 𝑊6(,! ≥ 7 %&' (elastisch buigend moment van een constructie of balk, moet je
()*+!
berekenen om bijvoorbeeld het kleinste UPN profiel te zoeken dat een
geïntroduceerde buigspanningen kan opvangen, moet dus het grootste moment
zoeken dat ergens op de balk werkt (is makkelijk te vinden in een momenten
diagram))



- Enkelvoudige afschuiving (normaalspanning bij bijvoorbeeld een piston):
(9)∙:
è 𝜎&)8 = / ≤ 𝜎&)8,4/; eventueel met 𝛾 de veiligheidsfactor
- Dubbelvoudige afschuiving (schuifspanning bij bv een pin)
#
∙(9)∙:
è 𝜏&)8 = ,
/-!$
≤ 𝜏&)8,4/; eventueel met 𝛾 de veiligheidsfactor
- Torsie spanning:
4∙%
è 𝜏 = < met M het moment, r de straal en J het traagheidsmoment
- buigspanning:
4
è 𝜎=6>?*>@ = A%&' ≤ 𝜎&)8,4/;
+),/
- Normaalspanning:
B∙(9)
è 𝜎>$%&))( = / ≤ 𝜎&)8,4/; Met N de normaalkracht, en eventueel
met 𝛾 de veiligheidsfactor.
- Buiging spanning van een balk (om de minimale waarde voor de zijde van de
vierkante doorsnede te bepalen)
/
4∙ !0
è 𝜎=6>?*>@ = 5
,
≤ 𝜎&)8,&)C met I voor een vierkant is D,




;∙E
- 𝜑 = F∙< formule voor de hoekvervorming met T de torsie, dus het moment
dat eigenlijk de torsie veroorzaakt

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper LockSmith. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,56. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68175 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€4,56  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd