100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary final exam 7U9X0 / 7U0B20 €7,48
In winkelwagen

College aantekeningen

Summary final exam 7U9X0 / 7U0B20

 1 keer verkocht

This document contains a full summary in order to prepare for the final exam for the course Research and Statistics 7U9X0 (old form) - Quantitative Research Methods and Statistics 7U0B20 (new form).

Voorbeeld 3 van de 18  pagina's

  • 19 juli 2024
  • 18
  • 2023/2024
  • College aantekeningen
  • Theo arentze
  • Alle colleges
Alle documenten voor dit vak (10)
avatar-seller
tue2022
REASERCH AND STATISTICS (7U9X0)
RESEARCH METHODS


PROBLEM FORMULATION


Formulation of the research objective
- A problem has been identified
- Research cannot solve the problem, but will increase the knowledge about the problem
and the possible solutions
- Which can lead to the best solution for the problem


Part I: research objective
- Why is the research needed?
- For what purpose will the knowledge from your research be used?
o Related to the recommendations -> how to act?
- Without objective it is difficult to make choices in research


Part II: research question
- This question is about knowledge
o Which new knowledge should be generated?
- Formulation as a question (with question mark at the end)
o The objective is a statement, not a question
- The research question is accompanied with 2 or more subquestions
o Subquestions are the components of the main question that need to be answered
- Types of research questions:
o Frequency questions – how many, how often
o Difference questions – is there a difference between … (e.g. 2 groups, 2
instruments etc.)
o Relation questions – is there a relation between …



 Positive correlation
 High scores on 1 variable often go together with high scores on the
other one (and low scores with low scores)
 E.g. weight of car <+> fuel consumption
 Negative correlation
 High scores on 1 variable often go together with low scores on the
other one
 E.g. price <-> willingness to purchase a project // year of introduction
of car model <-> fuel consumption

,CONCEPTUAL MODEL


Assumed relationships between variables
- What? – which variables must be considered
- How? – are the variables related to each other? Based on theory/experience/literature etc.
- Function? – helps formulate hypothesis and specific research questions -> determines
which analyses are conducted
Some guidelines for determining a conceptual model
- The unit of analysis - all variables should have the same unit of analysis
- Relationships – links represent causal relationships AND all boxes represent varieties
o X happens earlier in time than Y and X has an influence on Y
- There must be a correspondence between the conceptual model and the research
questions
1. The dependent variable(s) correspond(s) to the subject of the main question
2. Every relationship corresponds to a subquestion
- Check the consistency between research questions and the conceptual model
o Dependent variable(s): subject main Q
o In principle, every box occurs as a subquestion
o Every relationship occurs as a subquestion
- If not, then either change the conceptual model or change the questions


CAUSALITY
- X causes Y
o If we change X -> Y will change too
o X = cause, independent variable, predictor
o Y = effect, dependent, explained or predicted variable
- Why important?
o Understand – scientific
o Predict consequences of policy measures
- Condition for causality: X proceeds Y in time


Spurious relationship
- Two or more events or variables are associated but not causally related
- A correlation exists between X and Y
- This disappears after controlling for Z (3rd variable)
- Condition of causality: no 3rd variable exists that can explain away the correlation


Conditions for causality
1. Statistical correlation – can be measured
2. Cause before effect – time dependence can be a problem
3. No spurious relationship – measure all potential alternative causes and test if correlation
still exists
4. Theory: causal mechanism – how does the cause generate the effect

, RESEARCH DESIGN


Two important ideal types
- Experiment
o Typically – 1 group gets treatment, another group does not
o Much control by researchers – best design for ruling out alternative explanations –
statistical analysis is often simple
o Used for measuring effects of treatment and evaluative research (testing a
hypothesis)
o Main characteristics:
 Control on independent variables – researcher decides which case gets
treatment; time order control
 Randomization – cases are randomly assigned to control group and
experimental group
 the design allows finding the effect of X, taking into account
autonomous change
o effect due to cause (experimental group) = Y2 – Y1
o autonomous change (control group) = Y4 – Y3
 net effect = (Y2-Y1) – (Y4-Y3)
 Before and after measurement – how much has changed
 Control group – group that does not get treatment
- Survey
o Typically – large group of respondents completes a questionnaire
o Less control by researcher – ruling out of alternative explanations needs to e done
by using advanced statistics
o Often used for explorative and descriptive research
o Main characteristics:
 Systematic interviewing or observation – all cases gets same questions
and same response possibilities
 One moment measurement – no before/after measurement; problems with
time control
 Large numbers – many cases to have reliable measurements; many
variables – testing for possible alternative causes (spurious relationship)
o When to apply? – predictors that can be controlled (age, gender etc.) // non-
observable variables (motives, attitudes, preferences, perceptions, wishes, needs
and plans / reasons for behaviour / behaviour in past)
o But problems with identification of causality
 No time control – due to 1 measurement moment & no control on
predictor // does cause come before effect? *theory necessary
 Spurious relations – in an experiment potential alternative explanations
are ruled out // this does not apply for a survey *explicitly test for spurious
correlations


VALIDITY
- Internal validity – are casual interpretations in research valid // are an alternative
explanation ruled
- External validity – are results generalizable to different places, times, groups and
circumstances

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tue2022. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,48  1x  verkocht
  • (0)
In winkelwagen
Toegevoegd